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Abstract

Data flow analysis is one of the important activities carried out by an optimizing compiler before
applying any optimizations. It involves the collection of information about how the various data items
in the program are defined and used. This information can then be used by the optimizer to apply
various transformations. Global data flow analysis is performed at the level of the entire program
rather than the basic blocks. Currently, the iterative methods are being widely used for performing
this analysis. The iterative data flow analysis has a time complexi®(0f + 2)n), whered is the

depth of the flow graph. In the worst case- n — 1, so that iterative data flow analysis in worst case

is O(n?). Also, this method involves some extra overheads.

Ken Kennedy, in 1975, had proposed another approach towards global data flow analysis, in
which we construct an intermediate representation of the flow graph, cadiéel listingand then
apply the data flow equations to the nodes in that order. The significance of this approach towards
data flow analysis is that if the node listing for a flow graph can be found quickly, it will enable us
to do the various kinds of global data flow analyses quickly. Shortly after that, in 1976, Al Aho and
J.D.Uliman, gave a method of constructing node listings for reducible flow graphs. Their algorithm
produced a node listing of length+ 2.01n log n in time O(n log n). Their method was based on the
theme of converting a reducible flow graphs into spiral graph, finding the node listing of the spiral
graph, and from that, derive the node listing of the original graph.

However, it has been experimentally observed that for all reducible flow graphs, the length of
the minimal node listing is very small than the one proposed by Aho and Ullman. In particular, it
has been seen that for every reducible flow graph obdes, there exists a node listing of length
n + nlogn. To prove this result, we propose a new concept calklukity of a graphdenoted as,
which is the maximum number of times a node appears in some node listing. Thissthke density
of a graph, there exists a node listing for the graph of ledgth (6 + 1)n. We then propose to show
thatd < |logn| for any reducible flow graph, so that for all reducible flow grapmafodes, there
exists a node listing of length + n log n.

Towards proving this result, we have derived many intermediate results. We have developed the
concept of anaximal reducible flow grapWwhich are special type of reducible flow graphs of which
every reducible flow graph is a subgraph. Thus, we can use these graphs to find or prove the upper
or lower bounds on the properties of reducible flow gra@iral graphsandbinary parsable flow
graphare special types of maximal reducible flow graphs for whom we have proved thabg n.

Based on this result, we also have an “intuitive” yet informal proofsfot logn for all reducible
flow graphs.

A study of the properties of maximal reducible flow graphs and some experimentation also brings
out the significance of théepthand thedominator treeof a flow graph and motivates us to change
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our original conjecturé < logn to§ < log (d + 1).

Given all the non-redundant acyclic paths in a flow graph, finding its density manually may not
always give correct results, as a node listing with smaller density may exist. Brute force method
remains the only choice and its g@mputationally very hardbecause good bounding functions are
not known. So, we have implemented brute force programs to find the density of the given reducible
flow graph onPARAM 10000 Supercomputesing theParallel Virtual Machineand theMessage
Passing Interfacébraries at theCenter for Development of Advanced Computing’s National PARAM
Supercomputing Facility

We have also written several papers regarding our findings and we wish to publish them in some
journals.

Apart from these theoretical developments, we also have implemented a library of tools on a
Linux system using such tools $&x, yaccandshell scripts These tools are the implementations
of known algorithms, the algorithms developed by us, as well as many “utility” programs. These
tools help us with experimenting with flow graph and carrying out common operations. For user
friendliness, we have also provided a GUI front end to these tools using boft tieary as well as
the GTK+/GNOME library.

gon
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CHAPTER

Introduction

In this introductory chapter, we will see what data flow analysis is and how it is useful for performing
various program optimizations. More information on these optimizations can be found in [5].

1.1 Code Optimization

Ideally, compilers must produce code that is as good as can be written by hand. However, this goal is
very difficult to achieve. However, the code produced by straightforward compiling can made to run
faster or take less space, or both by applying certain program transformationsoglladations

. Compilers that apply such code improving transformations are capéchizing compilers The
optimizations that are applied by such compilers can be divided into two categories,

Machine Dependent Here, the specific characteristics of the underlying machine for which the code
is generated are taken into consideration.

Machine Independent Here, the transformations are applied without considering any properties of
the target machine.

The best program transformations are those that yield the most benefit for the least efforts. Some
of the properties that the program transformations must have are

1. It must preserve the meaning of the program.
2. It must speed up the program by a measurable amount.

3. It must be worth the effort i.e. a long and complex optimization that speeds up the program by
only a small amount is not worth applying.



1.2 An Organization for an Optimizing Compiler

1.2 An Organization for an Optimizing Compiler

The code improvement phase of a compiler consistoatrol flow analysisanddata flow analysis

followed by the application of the transformations, as shown in Figure 1.1

Code Code
---------- A N
Front End o Optimizer N - Generator
"""""""" // , N \\
7 Vi \ N\
// / \ \\
e / \ N
s / \ N
Ve / \ N\
7 / \ N
// 4 N \\
7/ / \ N
Control Data
flow | Flow _ | Transformat-
Analysis Analysis lons

Figure 1.1: Organization of the code optimizer

Control flow analysidraces the patterns of possible execution in a program. For this purpose,
a program is represented bycantrol flow graphor simply aflow graph In a flow graph, the edges
indicate the flow of control and the nodes represent the basic blocks, as will be discussed later. The
construction, structure, representation and properties of such graphs is a part of control flow analysis.

Data flow analysisraces the possible definitions and uses of data along the potential control flow
paths and collects the information about certain attributes of the data items. For example, data flow
analysis of a program may indicate that for all possible paths the program takes, the value of a certain
variable say at a certain point in the program is alwalysT his fact can then be used by the optimizer
to speed up the code. Data flow analysis is generally performed by solving a system of simultaneous
equations. If the analysis is performed by looking only at the statements in a basic block, it is called
local data flow analysisOn the other hand, if the data flow analysis is performed by looking at all
the the basic blocks in a program, it is callgildbal data flow analysisNormally, local data flow
analysis is performed before the global data flow analysis. There are many types of data flow analysis
like unidirectionalandbidirectional inter-proceduralandintra-procedural Furthermore, data flow
analysis can be performed by using various methodsiteirtive, exhaustive, incrementaic. We
will be discussing these terms in later chapters.

1.3 An Outline

This project report is divided into five parts. The first part aims at introducing data flow analysis
and node listing. It contains an explanation and definitions of commonly used concepts in data flow
analysis and it also explains the known algorithms for data flow analysis. It describes the node listing
approach to data flow analysis and the algorithm due to Aho and Ullman. The second part describes
the research that we have done during the project and the results that we have obtained. The third
part deals with software engineering. The fourth part contains details of various implementations that
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were carried out during the project. The fifth part contains some of the papers that we referred during
the project.

Chapter 2 describfow graphsand states some of their properties of our interest. Chapter 3
describedlata flow analysign detail. It also explains the terms suchfawvard, backward unidirec-
tional andbidirectionaldata flow analysis. It also explains titerative, incrementalinter-procedural
andintra-proceduraldata flow analysis. Chapter 4 explains tiede listingapproach for data flow
analysis, its significance and current limitations. It also briefly describes the algorithm given by Aho
and Ullman for constructing the node listings for reducible flow graphs.

Chapter 5 introduces the concept of thensityof a graph and explains various results that we
have derived regarding the densities of reducible flow graphs. Chapter 6 descaikiesal reducible
flow graphsthat we developed during the project. Chapter 7 described various properties of spiral
graphs in relation to the maximal reducible flow graphs. It also describes a new algorithm for the
reduction of a flow graph into a spiral graph. Chapter 8 is a cornucopia of some smaller but important
results that were found during the project. Chapter 9 descnfuadnal reducible flow graphthat
are basically a motivation towards grouping all the flow graphs having the same density. Chapter 10
concludes and also examines what more can be done towards continuing the research.

Chapter 11 comments about the organization of the programs developed during the course of the
project and the tools used therein.

Chapter 12 describes the details of the brute force implementation for finding exact densities of
flow graphs. This implementation was carried out on PA&RAM 10000 Supercomputat CDAC
using theParallel Virtual Machineand theMessage Passing Interfatibraries. Chapter 15 lists the
various softwares that were used during the project. Chapter 16 provides a detailed description of
all the programs developed and serves as a manual. Chapter 17 shows some of the algorithms that
were developed and implemented. Chapter 14 describes the GUI front end for the programs that was
developed using the Qt Library under Linux and a demonstration of the programs developed. Chapter
13 describes another GUI front end developed using the GTK+/GNOME libraries.

Appendix A includes some of the papers that we referred during the project. Appendix B presents
the papers that were written during the project. Finally, we list all the books, papers, reports etc. that
were some time or the other used during the project.
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CHAPTER

Flow Graphs and Their Properties

In an optimizer, a program is represented #swa graph In this chapter we will see what these flow
graphs are and also examine some properties and algorithms concerning flow graphs.

2.1 Basic Blocks

A control flow graphor simply aflow graphis a graph representation of the intermediate code gen-
erated by the intermediate code generator. Nodes in the flow graph represent computations whereas
the edges represent the flow of control. A flow graph is extensively uses as a vehicle for collecting
information about the intermediate program.

Definition 2.1 (Basic Block) A basic blockis a sequence of consecutive statements in which flow
of control enters at the beginning and leaves at the end without halt or possibility of branch except at
the end.

Thus, we can see that a basic block is nothing but any sequence of program statements not
containing transfer of control instructions (i.e. goto’s) except at the end. Algorithm 1 can be used to
partition a sequence of intermediate code statements into basic blocks,

Example 2.1 For the intermediate code in Figure 2.1, the leaders are the statements (1), (2), (3),
(4), (6) and (7). Therefore the basic blocks &&)}, {(2)}, {(3)}, {(4), (5)}, {(6)} and{(7)}.

(1) if a <= b goto (3)
(2) max = a
(3) goto (5)

(4) max == b
() if ¢ <= max goto (7)
(6) max = ¢

(7) return max

Figure 2.1: Division into Basic Blocks
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Input A sequence of intermediate code statements
OutputA list of basic blocks
Method

1. We first determine the set of leaders the first statements of basic blocks. The rules we
use are the following.
(a) The first statement is a leader.
(b) Any statement that is the target of a conditional or unconditional goto is a leader.
(c) Any statement that immediately follows a goto or conditional goto statement is a
leader.

2. For each leader, its basic block consists of the leader and all statements upto but not
including the next leader or the end of the program.

Algorithm 1: Division into basic blocks

2.2 Flow Graphs

We can add the flow-of-control information to the set of basic blocks making up a program by con-
structing a directed graph calledlaw graph[5, p. 532]. The nodes in the flow graph are the basic
blocks. One node is distinguishediasgial; it is the block whose leader is the first statement. There is

a directed edge from block; to block B if B; immediately followsB; in some execution sequence;
that is, if

1. there is a conditional or unconditional jump from the last statemenBt od the first statement
of Bs.
2. B, immediately followsB; in the order of the program, arigi does not end in an unconditional

jump.

We say thatB; is apredecessoof By and B, is asuccessoof B;.

When a program is converted into a flow graph, the jump statements at the end of a block are
made to point to the block rather that to the actual quadruples. Secondly, in a flow graph, an edge
from block B to block B’ does not specify the condition under which the control flows fieto B’.

2.2.1 Dominators

The dominator relationships are one of the most important characteristics of flow graphs that enable
us to detect loops apart from many other things.

Definition 2.2 (Dominators) A noded in a flow graphdominatesnoden, written asd domn, if
every path from the initial node of the flow graphit@oes throughl.

From the above definition, it can be easily seen every node dominates itself. Also, it can be seen
that the initial node:, dominates all the nodes in the flow graph. Finding the dominator relationship
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in a flow graph involves some kind of data flow analysis. An algorithm for finding dominators in
given in Chapter 17 (Algorithm 19).

A useful way of presenting the dominator information of a flow graph is in a tree, called the
dominator tree In a dominator tree,

1. The initial node is the root of the tree.

2. Each node dominates only the descendents in the tree.

The existence of the dominator trees follows from a property of dominators; each madea unique
immediate dominatom that is the last dominator of on any path from the initial node t@ that is,
the immediate dominatorn has the property that i # n andd domn, thend domm.

@)
(1) ©

@)
&) &)

(@) (b)

Figure 2.2: Flow Graph and its dominator tree

Example 2.2 Figure 2.2—a shows a flow graph and Figure 2.2—-b shows its dominator tree. The
initial node0 dominates all the other nodes and hence it is the root of the dominator tree.1Node
dominates node since control can flow to nodeonly after passing through node Similarly, node

1 also dominates nod&s4 and5. Nodes2 and3 dominate only themselves. Nodelominates node

5.

Definition 2.3 (Back Edge) An edge in a flow graph is calledlmackedge if its head dominates
its tail.(If » — m is an edge in a flow graph, thenis the head and is the tail).

Thus, ifn — m is a back edge ifn dominates:. For example, in the flow graph of Figure 2.2,
the edgel — 1 is a back edge asdom4. Similarly the edge8 — 0 and5 — 3 are back edges.

Observation
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1. Since the initial node, dominates all the other nodes in the flow graph, all the edges in the
flow graph of the forrn — ng, n # ny are back edges.

2. Since each node dominates itself, self loops of the form n are back edges.

Definition 2.4 (Forward Edge) An edge in a flow graph is calledfarward edge if it is not a back
edge.

Observation Any edge from the initial node to some other node i.e. any edge of the/grm
n,n # ng is a forward edge since does not dominate,.

The dominator relationship can be used to find the loops in a flow graph. From the principles of
structured programming, we know that a loop must have a single entry point, callexhdsr This
entry point dominates all the nodes in the loop. Also, there must be at least one way to iterate the
loop i.e. at least one path back to the header. The loops in a flow graph can be defined in terms of
back edges.

Definition 2.5 (Natural Loop) Given a back edge — d, we define thenatural loopof the edge
to bed plus the set of nodes that can reackvithout going throughi. Noded is the header of the
loop.

2.2.2 Reducible Flow Graphs

Reducible flow graphg32] are special types of flow graphs.Almost all the flow graph that one en-
counters in practice ameducible In particular, use o$tructured programmingrinciples results in
program whose flow graphs are reducible. Any program not containing goto’s will be reducible. One
important property of reducible flow graph is that there are no jumps into the middle of loops, the
only entry into a loop is through itseader There are many equivalent definitions of reducible flow
graphs. We will see them one by one.

Definition 2.6 (Reducible Flow Graph) A flow graph( is reducible if and only if we can parti-
tion the edges into two disjoint groups, called the forward edges and back edges, with the following
two properties:

1. The forward edges form acyclicgraph in which every node can be reached from the initial
node.

2. The back edges consists only of edges whose heads dominates their tails.

Thus, if a flow graph is reducible, then removing all the back edges in the flow graph gives us an
acyclic graph. This condition can be used to test for reducibility of flow graphs.

Example 2.3 Consider the flow graph in Figure 2.2. Removing the back edges0,4 — 1 and
5 — 3, it can be easily seen that the resulting flow graph is acyclic. Hence the flow graph in Figure
2.2 is reducible.
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oulb

Figure 2.3: A non reducible flow graph

Example 2.4 As another example, consider the flow graph in Figure 2.3. Hese¢he initial node,

so edged — 2 and1 — 3 are forward edges. Now, neith2idominates3 not does3 dominate<.

So both the edge3 — 3 and3 — 2 are also forward edges. Thus, all the edges in this graph are
forward edges. Clearly, this graph has a cy@e3, 2). Hence the graph is not reducible.

The flow graph in Figure 2.3 is not reducible because the nddesl3 form a loop and one can
enter this loop either through the edge~ 2 or 1 — 3 i.e. the loop is not a single entry loop.

We now state some more properties of reducible flow graphs [32].

2.2.3 Ty - T, Analysis

We first define the two transformations as follows

Definition 2.7 ( 77 Transformation) If n is a node in a flow graph with a loop i.e. an edge- n,
then al; transformationis defined as the deletion of the loop.

Definition 2.8 ( 75 Transformation) If there is a node:, not the initial node, that has a unique
predecessar , then al; transformationis defined as the consumption of nadéy nodem, that is,
delete node: and make all successorswof{includingm possibly) as successorsiof

We now state an equivalent definition of reducibility [32].

Result 2.1 A flow graph is reducible if and only if it can be transformed into a single node by
repeated applications df; and7; transformations.

Example 2.5 Figure 2.4 shows how a flow graph is reduced into a single node by repeated applica-
tions of T} andT; transformations. (a) is the original flow graph. Natleas the only predecessar

so we apply &5 transformation to get (b). Then we remove the self loop on the néthy applying

a T transformation to get (c). Now has the only predecessey so applying &l; transformation

gives (d). Nowed has the only predecessdr, so again applying &; transformation gives (e). Thus,

we have transformed the original graph into a single node by applirend 7, transformations.
Hence, the flow graph in (a) is reducible.

We now state a theorem regarding irreducible flow graphs [32]. We first definefbo(v graph.

Definition 2.9 (( U)-flow graph) A (0)-flow graph is defined as any of the flow graphs represented
in Figure 2.5, where the dashed lines denote node disjoint (except for endpoints, of course) paths;
nodesa, b, ¢, andn, are distinct, except thatandn, may be the same.
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a (b) (© (e)

Figure 2.4: T} - T; Analysis

Figure 2.5: The {J)-subgraph

Result 2.2 (The ( O)-Characterization Theorem) A flow graph is irreducible if and only if it
contains (J).

2.2.4 Regions
The division of a flow graph into regions serves to put an hierarchical structure on a flow graph.

Definition 2.10 (Region) We define a portion of a flow graph calledegionto be a set of nodes
N that include deader which dominates all other nodes in the region.

Another equivalent definition of a region from [4] is:

Definition 2.11 (Region) A region with headeh of a flow graphGG = (N, E, ny) is a set of nodes
N"and edge€’ C N’ x N', with h in N, such that ifm — nisin E, then
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1. ifnisin N andn # h, thenm s in N’, and

2. if m andn are inN’ andn # h, themm — nisin E’.

That is, the only way to enter a region from outside is through its header.
We now state the definition of the dag of a flow graph [32].

Definition 2.12 (DAG of a Flow Graph) A dag of a flow graphG = (N, E,ng) is an acyclic
flow graphD = (N, E’, ny) such that?’ C E and for any edgein £ — E’, (N, E' U {e}, ny) is not
a dag. Thatisp is a maximal acyclic sub-flow graph.

The following result regarding DAG of a reducible flow graph is from [32].

Result 2.3 If G = (N, E,ny) is a reducible flow graph, the = (N, E — B, ny) is a dag ofG,
whereB is the set of back edges (A

The reason for dividing a flow graph into regions is to impose a hierarchical structure on the flow
graph. Formally, this structure is defined in terms of the “parse” of a flow graph. We first state the
following result from [4].

Result 2.4 LetR = (N’, E’) be a region of some flow graph represented by some node during
the reduction of7, with N’ not a singleton. ThetV’ can be partitioned into two nonempty disjoint
sets of node$V; and N,, such that(V,, £;) and (N,, Es) are regions, wherdy; = E' N Ny x Ny
andEy = E' N Ny x Ns.

Thus every non singleton region can be divided into two regions. We call this division as “parse”

in this report, though the actual definition is somewhat different. Thus a parse is nothing but a
sequence showing how a region and its parses are further parsed.

gon



CHAPTER

Data Flow Analysis

Iterative algorithms are used for practical intra-procedural data flow analysis.There are several varia-
tions of iterative algorithms. The following three are the most common:

1. Worklist version
2. Round Robin version

3. Node listing version

The worklist versions maintain a set containing “work-to-be-done” that is initialized, updated on-
the-fly as the algorithm executes and eventually exhausted. The worklist contains information to
be propagated whose “influence” may not have been recorded yet. Nodes may be “visited” in an
arbitrary order.

The round-robin version propagates information by starting with an initial estimate of the desired
information to nodes by repeatedly visiting the nodes in a round-robin fashion until information flow
stabilizes(i.e., a fixed point is reached).

The Node listing version first preprocesses the flow graph to obtain a list of nodes ( with repe-
titions, in general ) then propagates information by visiting nodes in the order in which they occur
on the list. The node listing has the property that visiting nodes in the indicated order suffices to
propagate information.

3.1 Advantages of using Iterative Algorithms

1. Worklist and round-robin versions of the iterative algorithms applpltcknown data flow
analysis.

2. These algorithms are very easy to program. No graph reductions are necessary, as in interval
analysis algorithm and Ulliman’s algorithm. Therefore the iterative algorithms are oblivious to
the reducibility of the underlying flow graph.
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3.2 Disadvantages of using Iterative Algorithms

1. The disadvantage of the node listing version of the iterative algorithm is that the preprocessing
necessary to compute a good node listing is usually nontrivial [4, 22].

2. The most important undesirable quality of the worklist and round-robin versions is the fact that
the worst case time complexity of these algorithms is not good.

For example, with sparse reducible flow graphs on “bit vector problems” these algorithms re-
quire O(n?) bit vector steps in the worst case, whereas Ullman’s algorithm requires at most
O(nlogn) bit vector steps.

3. Another undesirable quality is that because the iterative algorithms do not analyze the underly-
ing flow graphs, nothing is known about the loop structure of the graph, should this information
be desired.

Nevertheless, the ease of programming and generality make the iterative algorithm excellent for prac-
tical use when a flow graph is necessary, until of course another solution is discovered!

The sections to continue describe in brief variations of the iterative algorithm applied to a class
of very simple data flow analysis problems that are cdltetvector frameworks”.
Note : Considering just bit vector frameworks is sufficient because

1. it simplifies the exposition in that these problems are easier to understand than more general
problems.

2. such problems do occur often enough to justify a separate treatment.

3.3 Representative, Basic Data Flow Analysis Problems

There is an important subclass in intra-procedural data flow analysis problems each of which can be
formulated as a collection of set equations, reminiscent of equations for conservation of flow and
the sets involved with each flow graph node, each bit position corresponds to a program variable (or
expression), and a bit indicates nonexistence or possible existence of an attribute of that variable (or
expression) at that node.

There are four representative problems of this subclass.These problems are called

1. “available expressions”
2. “reaching definitions”
3. “live variables”

4. “very busy expressions”

These problems are very similar in that almost any algorithm to solve one of these problems can, with
slight modification, be used to solve the other problems.

The attention is restricted to intra-procedural rather than inter-procedural problems. For this
reason we assume that for for the procedure under scrutiny :
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there is a control flow graph
all relevant local data flow information is available

all variable aliasing is known, can be handled, and thus can be ignored and

H W bR

the procedure is isolated in that we may ignore where and how it is called.

3.4 Brief description of each problem

3.4.1 Available Expressions (AE)

An expression such a& + Y is available at a pointp in a flow graphG = (NV, A, s) iff every
sequence of branches that the program may takectuseX + Y to have been computed after the

last computation oX or Y. By determining the set of available expressions at the top of each node

in G, we know which expressions have already been computed prior to each node. Thus, we may be
able to eliminate the redundant computation of some expressions within each node.

3.4.2 Reaching Definitions (RD)

A definition of a variablez is a statement that assigns, or may assign, a value £ definition d

reachesa pointp if there is a path from the point immediately followirfto p, such thatd is not
“killed” along that path. Intuitively, if a definitiord of some variable reaches poing, thend might

be the place at which the value @used afp might last have been defined.\W#l a definition of a
variablea if between two points along the path there is a definition.of

3.4.3 Live Variables (LV)

A number of code improving transformations depend on the information computed in the direction
opposite to the flow of control in a program. lime variable analysis we wish to know for variable

x and pointp whether the value of atp could be used along some path in the flow graph starting at
p. If so, we sayr is live at p; otherwiser is dead at p.

3.4.4 Very Busy Expressions (VBE)

An expressiore is very busyat a pointp in a flow graph iff it is always used before it is killed. This
means that no matter what path is taken franthe expression will be evaluated before any of its
operands are defined.

3.5 A Taxonomy

The following table summarizes the four types of basic data flow analysis problems.
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Set Intersection, Set union,
“and” problems “or” problems
Top—Down Problems Available Expressiong Reaching Definition
(Operation over predecessors) (AE) (RD)
Bottom-Up Problems Very Busy Expressions  Live Variables
(Operation over successors) (VBE) (LV)

The AE and VBE use the set intersection operation and require a largest solution, whereas, RD
and LV use the set union operation and require a smallest solution.For AE and RD the operation is
over predecessors, whereas, for VBE and LV it is over successors. We call AE atmpRIDwn
(or forward) problemsbecause information is propagated in the same direction as control flow to
solve these problems. Conversely, we call VBE anddoitom up(or backward)roblemsbecause
information must be propagated in the opposite direction of control flow to solve these problems.

3.6 lIterative Algorithms

3.6.1 Worklist Version

There are three worklist versions of the iterative algorithm.

1. the segregated version,
2. the integrated version, and

3. Kildall's version.

In the segregated version we process one expression at a time.In the integrated version and Kildall's
version we intermix the processing of expressions, but in slightly different ways. Detailed algorithms
of each version is beyond scope of this project report.

3.6.2 Round-Robhin Version

This version uses bit vectors and the bit vector operatibvad andbvor .Instead of maintaining

a worklist, we repeatedly visit each node in round-robin fashion and propégdi@ward for AE

(1’s backward for LV). The algorithm terminates when one iteration fails to change any bit of any bit
vector.lt follows the “iterate-until-stabilization” paradigm.

gon



CHAPTER

Introduction to Node Listing

In order to give a more efficient data flow analysis methtel) Kennedy in 1975 proposed a new
approach towards global data flow analysis [22]. In his paper, he also conjectured a node listing
constructor with time complexity)(nlogn)t. Immediately after that, a®(nlogn) node listing
constructor was given b&ho andUIlIman [4]. The length of the node listing was+ 2.01n log n.

In this chapter, we introduce the node listing based approach to data flow analysis and see how it can
lead to efficient incremental data flow analysis of flow graphs.

4.1 Depth First Ordering

In all the problems of data flow analysis considered before, it can be observed thevertyof
significance at a node will be propagated to that node along an acyclic pdtbs, any cyclic path

does not contribute towards the data flow analysis [5, p 672]. If all the useful information propagates
along acyclic paths, we have an opportunity to tailor the order in which we visit nodes in iterative
data flow algorithms so that after relatively few passes through the nodes, we can be sure that the
information has passed along all the acyclic paths.In particular, if we apply the data flow equations to
the nodes in the depth first order, the number of iterations required are boundeddapthef the

graph. In that case, the algorithm 2 gives a general algorithm for iterative data flow analysis.

It can be observed in this case thai i the depth of the graph, ther- 1 iterations are sufficient
to propagate the data flow values along acyclic paths. However, the above algorithm requires one
more pass to detect the fact that all the data flow variables have been propagated. d lsishef
depth of the graph, then the data flow analysis can be performed ir(i{ifae+ 2)n). In the worst
cased = n — 1 and hence in general, data flow analysis by iterative methods still remain&@n
problem.

It can be seen that there are two major areas of inefficiencies in the iterative approach towards
data flow analysis [22].

1. First, an extra pass through the program is required to discover that none of the data flow

1All logarithms are to the baskunless otherwise stated
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for i :=0ton — 1do /* Initialize the data flow variables */
Initialize in() and out() for block i ;

end for

change := true ;

I* Apply equations till the in’s and out’s stabilize */

5. while change == true do
6: change :=false;
7. for each block B in depth first order do
8: apply data flow equations to block B ;
9: update change;
10: if there is a change in in() or out() of block B then
11 change := true ;
12: end if
13:  end for

14: end while

Algorithm 2: Iterative Data Flow Analysis

variables change. This extra pass and the testing for changed data flow variables (sets) on each
pass results in a lot of unnecessary work that can be avoided if we could somehow know when
to halt the iteration.

2. Second, iteration over every node in each pass seems to be unnecessary. The problem is to
iterate exactly enough times to transmit information along any acyclic path in the program.

The node listing method of data flow analysis attempts to overcome both the above inefficiencies
of the iterative data flow analysis method. The node listing is an intermediate representation of the
flow graph that facilitates the propagation of data flow variables along the acyclic paths.

4.2 Motivation of Node Listing

To gain some motivation behind the node listing, consider the flow graph given in Figure 4.1-a.

The depthd of the graph in Figure 4.1-a. & As a result, using the iterative data flow analysis
algorithm requires$ iterations over all the nodes in the flow graph. If however, the data flow equations
are applied to the nodes of this flow graph in the ofde?, 3, 4, 3, 2, 1), then data flow analysis would
be correctly performed and fewer thanterations over the graph will be required. Thus, the node
listing specifies the order in which the equations are to be applied to the nodes of the flow graph.

To formally define a node listing, we first define simple and basic paths in a flow graph.

Definition 4.1 (Simple Path) A simplepath in a flow graph is a path that does not include the
same edge twice. That is, a simple path is nothing but an acyclic path.

Definition 4.2 (Basic Path) A basicpath in a flow graph is a simple path;, xs, ... , z;), such
that there is no shorter simple path framto =, which is a subsequence @f;, xo, . .. , ).
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Figure 4.1: Example Flow Graphs

Example 4.1 In the flow graph shown in Figure 4.1-b the p&th2, 3,4,5) is a simple path. The
path(1,2,4,5) is also a simple path. The patf, 2,3, 4,5) is not a basic path because there is a
simple path(1, 2,4, 5) which is a subsequence (f, 2, 3,4, 5). The path(1, 2, 4,5) is a basic path.

It can be seen that in case of “there exists” problems like live variables and reaching definitions,
propagation of the data flow variables along the basic paths is sufficient. However, in case of “for all”
problems like available expressions, propagations along the basic paths is not sufficient, we need to
propagate the values along all the simple paths in the flow graph.

4.2.1 Strong Node Listing
Definition 4.3 (Strong Node Listing) A strong node listindor a flow graphG = (N, E, ng) is
a sequencéni,ns, ... ,n,), m > n, of nodes fromV, in which nodes may be repeated more than

once, such that all the simple pathgirare (not necessarily contiguous) subsequences thereof.

Example 4.2 For the flow graph in Figure 4.11, 2, 3,4, 3,2, 1) is a strong node listing.

Definition 4.4 (Minimal Node Listing) A strong node listing for a flow graph is callesinimal
iff there is no shorter node listing for that flow graph.

The following three results about strong node listings are known
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e Every reducible flow graph has a node listing of length at most2.01n log n.
e There exists reducible flow graphs for which no strong node listing is shorte%thmg n.

e A strong node listing for a reducible flow graph with= O(n), e being the number of edges in
the graph, can be constructed®in log n) time.

4.2.2 Weak Node Listing

Definition 4.5 (Weak Node Listing) A weak node listindor a flow graphG' = (N, E,ng) is a
sequencéni,ns, ... ,n,),m > n, of nodes fromV, in which nodes may be repeated more than
once, such that all the basic pathgirare (not necessarily contiguous) subsequences thereof.

Since every basic path is also a simple path, every strong node listing for a flow graph is also a
weak node listing.

For the purpose of data flow analysis, it can be seen that for such problems as live variables and
reaching definitions, wherein propagation along basic paths is sufficient, a weak node listing suffices
for data flow analysis. However, for such problems as available expressions, wherein propagation
along all the simple paths is necessary, a strong node listing is necessary to perform the data flow
analysis. As a result, henceforth, we will concentrate only on strong node listings. Henceforth, when
we mean node listing, it is implicitly understood to be a strong node listing.

4.3 Some Known Results Regarding Node Listings

In his paper “Node Listings Applied to Data Flow Analysis,” Ken Kennedy [22] gives many results
regarding the node listings for reducible flow graphs. In this section, we state some of them that are
of our interest.

Result 4.1 LetG = (N, E,ng) be an acyclic flow graph, that is, there does not exists a sequence
(x1,...,x%) Of nodes inG such thatr; = z; and (z;, z,41) € E,1 < i < k. Then there exists a
node listing of length V| for G. Furthermore, this node listing contains every path, not merely the
basic paths.

Observation The above result really says that for acyclic flow graph, the length of the node listing
if | N| and that a node listing for an acyclic flow graph can be obtained by applying a “topological”
sort to the flow graph. Also, if the flow graph is not acyclic, then after the removal of the back
edges, it becomes acyclic and the node listing for such an acyclic flow graph is also calleglis
ordering

Result 4.2 For every reducible flow graph of nodes, there exists a node listing of lengiht 1)n
whered is the depth of the graph

Proof:

In the previous section, we have seen that if during the data flow analysis, the nodes are visited in
depth first order, thed + 2 iterations are sufficient for the data flow analysis. Of these, one iteration

is used just to discover that the data flow analysis is complete, and hence it is an overhead. Therefore,
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in reality, onlyd + 1 iterations are necessary for data flow analysis. Hence, if we repeat the depth first
ordering of the reducible flow graplis+ 1 times, the resulting sequence covers all the acyclic paths
in the flow graph. This exactly is the node listing with lengih+ 1)n. O

Result 4.3 For every acyclic reducible flow graph, there exists a node listing in which each node
appears exactly once.

Proof:
It can be easily seen that a topological sort [54] of an acyclic flow graph will have all the acyclic paths
in the flow graph as its subset. Thus, the topological sort of the acyclic graph is its node listing.

From a lemma in [4], we know that any acyclic path that enters a regibtom a node outside
the region cannot traverse any back edge. Thus, it can be easily seen that if a path enters a region
from outside, it traverses a subsequence of the topological sort of the flow graph obtained after the
removal of the back edges. We define this as acyclic ordering.

Definition 4.6 (Acyclic Ordering)  If G is a reducible flow graph, then i@cyclic orderingis
defined as any topological sort of the flow graph obtained fé6byy removing all the back edges.

We follow the convention of indicating the acyclic orderings by writing a “hat”i.edifs the
node listing for a certain flow graph, then its acyclic ordering will be denotetl &ince, in general,
an acyclic graph can have more than one topological sort, there are, in general, more than one acyclic
orderings for a reducible flow graph.

4.4 Node Listing Based Data Flow Analysis

Once we have obtained the node listing for the given flow graph, performing the data flow analysis is
quite simple. We simply traverse the node listing, applying the data flow equations to each node as
we visit it. Algorithm 3 shows how data flow analysis is done using the node listing method.

Find the node listing, say L, for the flow graph ;
for i:=0ton — 1do /* Initialize */

Initialize in() and out() for node i ;
end for
for each node x in L do /* Iterate */

Apply the data flow equations to node = ;
end for

Algorithm 3: Node Listing Based Data Flow Analysis

It can be seen that the node listing based algorithm has the following advantages over the iterative
algorithm:

1. The algorithm makes sufficient number of passes over the nodes in the flow graph so that all
data flow variables are stabilized. Extra pass just to detect that data flow variables have now
stabilized is not required, since we now know when to stop the process (the end of the node
listing).
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2. We don't have to keep a track of the changes in in() and out() of the various nodes in the flow
graph. Thus, the space for variable “change” along with the overhead of storing the old values
of in() or out() and checking for a change is avoided.

Thus, it can be seen that node listing based variation of the data flow analysis is indeed much more
efficient than the iterative algorithm. However, this method requires the construction of the node
listing of the flow graph which is not trivial. In fact, currently known algorithms take much longer
time (O(nlogn)) to construct the node listing. It is this initial pre-processing overhead because of
which the node listing method is not used in practice. Also the iterative algorithm is much more
simpler to implement.

There are two variants of this node listing algorithm [31]. They are as follows,

1. For “there exists” problem in which the confluence operator is set union (such as Reaching Def-
initions and Live Variable), a weak node listing is sufficient to perform the data flow analysis.
On the other hand, for “for all” problems in which the confluence operator is set intersection,
(such as Available Expressions and Very Busy Expressions), a strong node listing is required
to perform the data flow analysis.

2. Forforward data flow problems (such as Available Expressions), we apply the data flow equa-
tions to each node in the node listing in their actual order i.e. the node listing is processed as
it is. However forbackwarddata flow problems (such as Live Variables), the equations are ap-
plied to the nodes in the node listing in reverse order i.e. the node listing is processed in reverse
order.

4.5 Algorithm by Aho and Ullman

Aho and Ullman [4] have given an algorithm for finding the node listings for reducible flow graphs.
This algorithm has a time complexity 6f(n log n) and produces a node listing of length bounded by
n + 2.01nlogn. In this section, we briefly describe this algorithm. Detailed information about it can
be found in [4], which has been included in this report in Appendix A.

4.6 Heuristic Node Listings

In this section, we will explain a heuristic algorithm for finding the node listings of reducible flow
graphs. Note that the time complexity of the algorithm is very large((@.2™). However, these
algorithms are suitable for experimentation with graphs having limited number of nodes.

We know that if the acyclic ordering of a reducible flow graph is repedted1 times, the
resulting sequence of nodes is a node listing. This is the basic principle behind the heuristic node
listing constructor. We first definespanin an acyclic path.

Definition 4.7 (Span) If P is a acyclic path in a reducible flow graph, thespganis defined as a
sequencé of nodes inP having the following properties:

1. the nodes ity are consecutive i i.e. S is apropersubsequence d?,

2. the nodes irP are in acyclic order, and
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3. Sis not a subsequence of any other spaRin

In simple words, if we partition an acyclic path such that the nodes in each part are connected
by forward edges and the part themselves are connected by back edges, then each of these parts in
a span. It is easy to see that if an acyclic path contdiback edges, then it can be partitioned into
d + 1 spans. This is illustrated as follows,

J/ J/
-~ -~

Sa,1),501,2), - - 75(1,1612,?(2,1)75(2,2), o S @ka)s e S1,1) S(d41,2)s - - 5 S(d L kass)

Here, each underbrace indicates a span with spavingk; nodes andl + 1 such spanss; ;
is thej** node in thei'” span. The spans are connected by back edges so that each edge of the form
Sa.k) — Sa+1,1) IS a back edge.

Now to find the heuristic node listing for a given reducible flow graph, we first find all the acyclic
paths in that flow graph and divide each of the paths into spans. The node listing congistsl of
levels, one for each span, each level being a set. When adding th& pathe partially constructed
node listing, we add the first span i to level 1 in the node listing, add the second spa®ito
level 2 and so on. In other words, we add each span to the corresponding level. After all the paths are
processed, we list the nodes in level 1 in their acyclic ordering, followed by those in level 2 and so
on. The heuristic node listing constructor is showing in Algorithm 4.

Let NL;,1 <i < d+ 1 be an initially empty set for level i ;
for Each acyclic path P in G do /* Process each acyclic path */
d := depth of the path P ;
for i:=1tod+ 1do /* Process each span */
S := Span i of path P ;
NL;:=NL;US;
end for
end for
[* Print the node listing */
9 fori:=1tod+1do
10:  print nodes in N L; in acyclic order ;
11: end for

Algorithm 4: Heuristic Node Listing Constructor

In the program “Exe” given by Dr. Khedker as well as the progtaeuristic each acyclic path
P in the flow graph is processed in tiheverseorder i.e. the highest span is first added, then the
next highest span and so on. There is really no necessity of this reverse processing as it does not
always reduce the length of the heuristic listing. Also, the processing of the paths in the reverse order
increases the complexity of the program.

As a result, we have devised a new algorithm for finding the heuristic node listing which we
call as thesimplified heuristicsThis is a straightforward algorithm which processes each path in the
normal order, adding the lowest span first, then the next one and so on. This simplifies heuristic has
been implemented aheuristicand the wrapper shell scrifixe.sh
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4.7 Majority Merge Heuristics

In this section, we state another algorithm for finding the node listings for flow graphs. This is a
general algorithm and does not depend upon the properties of the graph for finding the node listing.
It is a heuristic for a gener&hortest Common Supersequepceblem. In fact, the problem of
constructing a node listing is the problem of constructing a shortest common supersequence where
the strings are the paths in the graph.

The Majority Mergealgorithm builds a node listing starting from an empty node listing as fol-
lows: It looks for the first node of every path in the graph, appends the most frequent node say
to the partially constructed node listing and then removes mofilem the front of the paths. This
process is repeated until all the paths in the graph are exhausted. Thus, the algorithm for majority
merge is as in Algorithm 5.

1. L=¢;
2: while all paths not exhausted do
for all nodes n do
frequency(n) = 0;
end for
for all paths p do
Increase the frequency of the front node of p by 1;
end for
maxNode = Node with the maximum frequency;
10: add node maxNode to the end of the node listing L;
11:  for all paths p with maxNode as the front node do

© o N TR ®

12: Delete the front node of p;
13:  end for
14: end while

Algorithm 5: Majority Merge

This majority merge algorithm has been implemented as the progmareuristicand works
as well as the other heuristics.

gon



NEW RESEARCH AND
THEORETICAL RESULTS




CHAPTER

Density of a Graph

In this chapter, we will introduce the concept of the density of a graph, methods of finding out density
of the given graph and implications of the density towards lengths of node listings.

5.1 Definitions

Definition 5.1 (Density of A Node Listing) The density of a node listind. is defined as the
maximum number of times a node is repeated in that node listing and is denated as

Thus, ifCy, C4, ... ,Cy_1 is the number of times nodes, n,, ... ,n,_1 respectively appear in
L, then

(SL = mam(C’o, Cl, e ,Ck_l) — 1.

Definition 5.2 (Density of a Graph)  Thedensity of a graplt~ is defined as the minimum of the
densities of all the node listings for that graph.

Thus, if (Lo, L1, ... , Li) is the set of all the node listings of a flow graghand the respective
densities of these node listings dtg, ¢y, . . . , dx), then the density of G is given by,

o= min(50,51, ce 7519)

It can be easily seen that if the density of a grapb, ithen there exists a node listing for that
graph in which some node appears- 1 times and no node appears more that 1 times. In the
worst case, it may be the case that all theodes in the graph appear- 1 times in the node listing.
Thus, if§ is the density of a grapty, then there exists a node listing @fwhose length is,

L<(0+1)n

Thus, the density of a graph gives us an upper bound on the length of the node listing. Many a
times, not all nodes in the flow graph appéar 1 times in the node listing. So the actual length of
the node listing may be less than the upper bound &f 1)n.
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5.2 Maximum Density and Length of the Node listing

First, let us see an extract from the paper “Node Listings applied to Data Flow Analysis” by K.
Kennedy [22]. It states that,

Result 5.1 For any flow graph there exists a node listing of lengtm? wheren = |N|, where N
is the set of nodes of the flow graph.

Proof:
Supposexr, =, . . . , z, be all the nodes of the graph. Then,
l= (21, ,Tpy @1,y eee y Tpyeee 1y een , Tpy)
with n repetitions of(z4, ... , x,,) is certainly a node listing. O

We make the above result stronger by the following statement:

Result 5.2 For any (reducible or irreducible) flow graph, there exishode listings (where is the
number of nodes in the flow graph). These node listings are:

oz, (1, xn), (X1, &),y (21, )

o (1, .., &p), Tn—1, (T1, o Tp)y e, (X1, 00, Ty)

o (z1,...,xn), (1, xn), ooy (X1, ), 21

In all these node listings, there are— 1 repetitions of x4, . .. , x,,). So, the maximum length of node
listing isn? — n + 1. Also, maximum value of density of graphis- 1.

Proof:

1. We consider only complete graph witmodes as it will have the maximum possible length of
the node listing as well as the maximum possible density amongst the graphsmattes.

2. In a complete graph with nodes, each acyclic path will consist of exactlyodes and there
will be n! such paths (including the paths starting with forward edges).

3. For each acyclic path except the path, ... ,z;), there exist two consecutive nodes, =)
such thatj # k, 1 < (index of nodez; in that acyclic path)< n — 1, and(z;,z;) is a
subsequence df4, ... ,z,).

4. So, all acyclic paths, except the patfy, ... ,z;) is covered in the list of nodes
L= (z1,...,20) -, (1,...,2p),

where there are — 1 repetitions of(zy, ... ,z,).
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5. To cover the patl,, ... ,x;), either the node,, or nodez,,_;,... or noder; is to be inserted
at appropriate position ih. Depending on which node is inserted, one of the above mentioned
node listing will be generated. The length of the node listing wilhbe- n + 1, and density of
graph will ben — 1.

Hence proved. O
Result 5.3 If d is the depth of a reducible flow graph, then the density of that flow grapkcigl.

Proof:

We know that if we repeat the depth first order (i.e. the acyclic order) of a reducible flow graph

times, then the resulting sequence is a node listing for the flow graph. In this sequence, each node
appearsl + 1 times. So, each node is repeatktiines. Hence, for reducible flow graphs, the density

(6) is given by

0 <d. U

5.3 Effect of Repetitions on the Flow Graph Structure

Result 5.4 If the structure of a flow graph is repeated twice, with the appropriate addition of back
edges and the forward edges, the density may not increase.

Proof:

Right now, no proof is available for the statement ‘the Density will never increase in the above case’.
But many counter examples are available for the statement 'the Density will always increase in the
above case’. One of the counter examples is:

O©CoOo~NOUITh WN PR

3
4
5
6
4
5
2
1

0 13 ;

10 11 ;

11 9 12 ,;

12 10 13 ;

13 3 . t

Result 5.5 If the structure of a flow graph is repeated four times, with the appropriate addition of
back and forward edges, the density may increase.

Proof:

Right now, no proof is available for the statement ‘the Density will always increase in the above
case’. But an examples is available for supporting the statement ‘the Density may increase in the
above case’. The example is:

01;
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10 ;
10 1 11 ;
11 12 ;

12 13 ;

13 11 14 15 ;
14 12 15 ;
15 10 11 16 ;
16 17 ;

17 15 18 19 ;
18 16 19 ;
19 1 11 . O

5.4 A Sureshot Method of Increasing the Density

5.4.1 Some definitions

Definition 5.3 (RNL) A restricted node listing (RNLjor a regionR is a sequence of nodes in
R (with possible repetitions) such that every acyclic patiRithat ends at an exit node &f is a
subsequence thereof. (More precise definition needed)

Definition 5.4 (ARNL) An acyclic restricted node listing (ARNL) for a regidhis an RNL ofR
such that the acyclic ordering d@t is a subsequence thereof.

Thus, for every regior, we associate with it:

e An Acyclic Ordering (AO)
¢ A Restricted Node Listing (RNL)
e An Acyclic Restricted Node Listing (ARNL)

Result 5.6 Given a minimal node listing for a reducible flow gragh for each node: :

1. There exists at least one acyclic path beginning wigluch that while mapping that path in the
node listing, we must mapto the first occurrence of in the node listing.

Proof:

If there does not exist any path in which the first occurrenceisfnot mapped, then removing
the first occurrence of from the node listing yields a shorter node listing. This contradicts the
fact that the given node listing is minimal. O
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2. When mapping all acyclic paths beginning with nadeve can always map the starting node
n to the first occurrence of in the node listing.

5.4.2 A Sureshot Method of Increasing the Density

Result 5.7 From a graphG of density§(§ > 0), we can obtain a graph of density+ 1, if we
replace each node a@f by a region having RNL in which at least one node appears twice.

We can construct the node listing for the new graph from the minimal node listing of the old
graph by:

1. Replacing each node that occurs exactly once by its ARNL.

2. For a node that appears more than once, replace the very first occurrence of the node by its
ARNL, unless the node is the first node in the node listing, in which case we replace it by its
RNL, and all other occurrences of the node by its AO.

Figure 5.1: A “region” with RNL having two repetitions

Example 5.1 Figure 5.1 shows a “region” with a restricted node listing in which nbdgpears
twice. This region has a single “exit” node viz. nodle The various “listings” associated with the
region are

ARNL 01210
RNL 1210

AO 012

Thus, replacing each node is a graph of densiyith the above region will give us a graph of
densityo + 1.
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5.5 Densities of Spiral Graphs

It is experimentally observed that for a spiral grapmafodes in which all the nodes are added using
rule (2b), the density is given by the expresstoa [logsn |

Result 5.8 For a 2b-spiral graph having: nodes, the density idogn], wheren is the number of
nodes.

Proof:
We define &b-Spiral Graph ofz nodes as a Spiral Graphefodes in which all the nodes are added
using the ruleb, as mentioned in [4]. We prove this statement by induction.

Basis of Induction
The above statement is true for= 1 to 9. The densities of these graphs are as shown in following
table.

Density | [logn|

©CoO~NOOIh,WNRES
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Induction Step
Assume that &b-Spiral Graph having — 1 nodes has the densifjogn — 1].

Hence

For a spiral graph having nodes, say~, in which nodes are added in order 1, ..., 0, we can
split the graph into 2 graphs, each having approximatg¢®nodes and each is2a-spiral graph. The
first graphG’ has the nodes added in order- 1, . .. , [n/2] and the secon@” has the nodes added
inorder|n/2],... 0.

Let
A’ = acyclic ordering of nodes 6’
B’ = acyclic ordering of nodes 6"
A = node listing ofG’
B = node listing ofG”

Then AB’A’B is always a node listing of G, as it can be easily seen that this covers all the acyclic
paths. This is illustrated in the Figure 5.2 O

Thus, it can be seen that if a reducible flow graph has a subgraph which is a spiral gfaph of
nodes, the density) of that reducible flow graph i§ < [log k|
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Only 1 forward edge
from G” to G Many backedges from

G'to G”

Figure 5.2: A 2b-spiral graph split into two subgraph&! andG”

Result 5.9 For any reducible flow graph, having nodes, the upper bound of density is given by
[logn].

Proof:

Among all maximal rfgs of» nodes, the density of th&-spiral graph will the largest, as it has the
maximum number of acyclic paths, which cover all the nodes and also there are maximum number of
back edges.

As stated in the previous result, the densito®piral graph having nodes is[logn|. So, the
upper bound of the density on any reducible flow graphdg n|. O

5.6 Two Methods of Finding Density

To find the density) of any reducible flow graph (or for that matt@nygraph), we can proceed by
the following two methods

e Assume an “initial” traversal in the acyclic order over the graph. This “initial” traversal is used
to initialize the data flow variables. Now, since this “initial” traversal contains the part of every
acyclic path in the flow graph up to but not including the first back edge in the path, we now
need to consider only those acyclic paths in the flow graph that begin with a back edge. We
find all the acyclic paths in the flow graph that begin with a back edge, ignore the first nodes in
these paths (as these nodes will be covered in the initial traversal) and then try to “fit” the path
so that we get minimum repetitions of nodes. We call the density of a flow graph obtained by
this method asigher densityof the flow graph and denote it by,. It is observed that in case
of spiral graphs with all nodes added using rule (2b), the higher density is given by

dp, = [logn]

However, there seems to be a “catch” in this method. If we keep aside the “initial” traversal for
initialization, then the information will not flow along the initial acyclic parts of the paths. This
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may givewrong data flow analysisThe only remedy to this problem seems to be to keep the
initialization of data flow variables separatestep from the initial traversal. Only then can we
guarantee that correct data flow analysis will take place.

e As we saw earlier, it seems that initialization of data flow variald@snotbe comfortable
incorporated into the initial traversal of the graph. Initialization necessarily must be a separate
step carried out prior to the data flow analysis. In that case, wgetard of the initial traversal
That is, we find all the acyclic paths in the given flow graph (both that begin with a back edge
and those that do not begin with a back edge). Then we try to “fit” the paths so as to get
minimum repetitions of nodes. We call the density of the flow graph obtained by this method
as thelower densityof the flow graph and denote it as It is observed that in case of spiral
graphs in which all the nodes are added using rule (2b), the lower density of the graph is given

by
6 = |logn]
= 0; < logn.

Also, it is observed that in case of a spiral graph in which all the nodes are added using rule
(2b), if the number of nodes ¥, then

5l:5h:n

gon



CHAPTER

Maximal Reducible Flow Graphs

In the paper “Node Listing for Reducible Flow Graphs,” [4] Aho and Ullman define a special type
of a reducible flow graph called ttepiral graph At first, it seems that spiral graph is the “largest”
possible reducible flow graph for the given number of nodes since the addition of any additional edge
to a spiral graph renders it irreducible. So, it may appear that every reducible flow graptodés

is a subgraph of some spiral graphrohodes. In the next section, we examine the exact relationship
between reducible flow graphs and spiral graphs. In particular, we show that there exists reducible
flow graphs that are not subgraphs of any spiral graphs. Also, in further sections, we show that apart
from spiral graphs there exists many other reducible flow graphs that are “largest” i.e. addition of
any additional edge renders them irreducible. We then formalize this notion in termaxaial
reducible flow graph&nd examine their properties in later sections. These graphs serve as a hew
method of synthesizing reducible flow graphs that is general and is based on the dominator tree of the
flow graph. These graphs were discovered and their properties studied by Rahul U. Joshi.

6.1 Motivation For Maximal Reducible Flow Graphs

6.1.1 An Auxiliary Result

Result 6.1 If a reducible flow graphG = (N, E, ny) is a subgraph of another reducible flow graph
G' = (N, E' ,ny) and R = (Np, E%, hg) is aregion inG’, then the subgraph @¥ containing nodes
N} and all the edges between them is also a region with heaglethat is, R = (Np, Nj; x N N

E, h,) is aregion.

Proof:

Let us assume that = (Nj, N, x N, N E, h,) is not a region. Therefore, there exist at least two
nodes, say.,, n, € Np, such that there is an edge from a node outéitim n, andn,, that is, there
exists edgep — n, andg — n, such thap, g ¢ N,.

Now, if n, = h,, then there cannot exist the edge- n;, in G’ asR’ = (N, E, hg) is aregion.
In a similar fashion, when, = h, and whem,, # h, andn, # h,, we contradict the fact that’ is a
region with headekh,,. Thus, we can say that there exists one and only one noBdanwhich there
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can exist an edge from a node outsi@eFurthermore, thus node is exactly the heddeof region
R O
Thus, we have proved thatdf is a subgraph of” and R’ is a region inZ’, then the subgraph of
G containing the nodes iR’ and all the edges between them is also a region with the same header as
R

6.1.2 Reducible Flow Graphs and Spiral Graphs

Theorem 6.1 LetG = (N, E, ng) be a reducible flow graph with > 1 nodes. Then the necessary
and sufficient condition fofz to be a subgraph of some spiral graph bmodes is that there exists a
set of disjoint regions?,, Rs, ..., R, whose union includes all the nodesdh having the following
properties:

1. Ry, Ry, ..., Ry are all singleton.
2. There exists a sequence of regidfis.S,, ..., Si such that

(A) Sl = R11
(B) fori > 1, S; consists of5;_; and R;, with one the predecessor of the other,
(c) SpisG.

Proof:

Let us first prove the sufficiency condition. Consider a reducible flow géagh (N, £, ny) which
satisfies the condition stated above. As each of the reging&, ..., R;. is singleton, it consists of
a single node. By a construction similar to Aho and Uliman, a spiral graph of whisha subgraph
can be obtained by adding the nodes R., ..., Ry in the following sequence:

e NodeR; is added using rule (1).
e If S;_; isthe predecessor @&i;, R; is added using rule (2a).

e if R;isthe predecessor ¢f_;, R; is added using rule (2b).

Let us now prove the necessity condition. Let us assume a reducible flow@raphV, £, ng)
of £ > 1 nodes which is a subgraph of some spiral graph formed by adding nodésadhe order
Rl, RQ, ceey Rk

Let S] = R;. Now consider the spiral graph formed by adding the ndgles?,, ... , R;_;. Let
the header of this spiral graph Bg,1 < j < i — 1. ThereforeS;_, = (Ry, Rs, ..., R;_1), header
= R;,1 < j <i—1. From Result 6.1, the subgraph@fhaving nodesk;, R;, ... ,R;,_1) is also a
region with headeR;. Let us call this regiord;_,.

. S{_, = Region with headeR;.

2

Now, if the nodeR; is added to the spiral graph using rule (2b), we state Has the prede-
cessor ofS!_, is G. For this, consider the spiral graph , = (Ry, Ra, ..., R;_1, R;), header =R,
formed by adding t&;_; the nodeR; using rule (2b). Clearly the subgraphg€ontaining all nodes
(R1, Rs, ..., R;_1, R;) and the edges between them is a region. Now, let this region be split into two
regions(S._,, R;). Clearly, eitherS!_, is the predecessor @f; or R; is the predecessor of_,. If
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S;_, is the predecessor @&, then R; is the header ob; which contradicts the fact thag; is the
header ofS;. ThusR; must be the predecessorSif ;.

Similarly, if node R; is added taS;_; using rule (2a), we can prove thét ; is the predecessor
of R;. Now applying this argument inductively t§;, S;_; etc. we can see that can indeed be
partitioned into regions, S5, ... ,S; such that

L] Si = Rl,
e fori > 1, S consists ofS;_, and R}, with one the predecessor of the other
e S.isG.

Thus, we have proved both the necessity and sufficiency conditions for the theorem. [

Note Thus, we can see that a spiral graph is not a “maximal” reducible flow graph, in the sense
that it does not contain all other reducible flow graph having the same number of nodes.

Example 6.1 Figure 6.1 shows a reducible flow graph4ohodes which is not a subgraph of any
spiral graph oft nodes.

Figure 6.1: A reducible flow graph which is not a subgraph of any spiral graph.

6.1.3 More Motivations

In section 6.1.2 we have shown that spiral graphs are not the “largest” class of graphs. To gain further
motivations for maximal reducible flow graphs, we now derive some more results.

Result 6.2 In any reducible flow graph, if node: dominates node, then addition of the edge
n — m will keep the graph reducible.

Proof:

Since noden dominates node:, the edgen — m added to the graph is a back edge. Now, by
definition, a flow graph is reducible if and only if removal of all the back edges in the graph gives
an acyclic graph. Since the original flow graph was reducible and we are adding a back edge, in the
newly formed graph too, removal of all back edges will give an acyclic graph. Hence, the addition of
the back edge — m keeps the graph reducible. O

Result 6.3 In any reducible flow graph, if two nodes andn have the same immediate dominator
(i.e. they are the children of the same node in the dominator tree)mwils the left sibling of., then
addition of the edgen — n keeps the graph reducible.
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Proof:

Let the common immediate dominator of nodesandn be k. Let us consider that we add the edge

m — n to the graph. Clearly, this edge is not a back edge dses not dominate:. So, the edge is

a forward edge. We will first show that the addition of this edge does not change the dominator tree
of the flow graph. Addition of the edge — n creates new path(s) from the initial nodg of the

flow graph ton. These paths are all the paths fremto m followed by the edgen — n. Sincek
dominatesn, each of these newly formed paths fregto n containk. Hence, addition of the edge

m — n keeps the dominance relations same as before.

We will now show that the addition of the edge — n will keep the graph reducible. We know
that in the newly formed graph, the edge— n is a forward edge. Let us assume that the newly
formed graph is not reducible. Thus, there is a cycle consisting of only forward edges in the graph.
Clearly, this cycle must contain the edge — n. Thus, there is a path in the original flow graph
from n to m containing only forward edges. This means thas beforem in the acyclic ordering
of the original flow graph. This contradicts the fact thats a left sibling ofn. Thus our original
assumption is wrong. Thus, the flow graph formed by the addition ef n is reducible. O

Result 6.4 In any reducible flow graph, if there is an edge from a neder any of its descendents
to a noden wherem andn have the same father in the dominator tree, then addition of the edge
n — m will make the graph irreducible.

Proof:
Let us assume that there is an edge from a riottenoden, wherek can bem or any of its descen-
dents andn andn are the children of the same node, gay the dominator tree. Clearly, there is a

Ps

Figure 6.2: The (J) Subgraph

path fromd to m,sincem is a child ofd. Let this path be denoted &3. See Figure 6.2. Similarly,
there is a path frond to n denoted as”. Now, path fromm to & and the edgé — n constitute

a path fromm to n, say P;. Also, the edge: — m constitute a path, sa¥, from n to m. It can
now be easily seen that the subgraph of the original graph containing thelnedandn» form a
(O) subgraph, as defined in [32]. Now, according to thgCharacterization Theorem in [32], a flow
graph is non reducible if and only if it contains @)(subgraph. Thus, the newly formed flow graph
is irreducible. O

Result 6.5 In any reducible flow graph, ifn is any ancestor of. other that its father , then the
addition of the edgen — n will either make the graph irreducible or change the dominator tree of
the graph.
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Proof:

Let d be the father ofn in the dominator tree. Thus, every path from the initial negléo » contains

d (and alsan asm dominatesi). Now if we add the edge: — n, then we get additional path(s) in
the flow graph fromn to n containing paths from, to m followed by the edge: — n. Sinced does
not dominaten, there exists at least one path fremto m not containingd. This path along with
the edgen — n forms a path from,, to n not containingd. Thus, in the newly formed graphis

no longer the dominator of. Thus addition of the edge — n changes the dominance relationship.
See Figure 6.3.

!
/
7/

Figure 6.3: Addition of an edgen — n

Furthermore, if there was a back edge- d in the original flow graph, that back edge no longer
remains a back edge in the new flow graph. This back edge along with thel edgeforms a cycle
in the flow graph containing only forward edge, making the flow graph irreducible. 4

6.2 Maximal Reducible Flow Graphs

Definition 6.1 (Maximal Reducible Flow Graph) A maximal rfgof » nodes is an rfg ofi nodes
such that addition of any additional edge in that rfg renders it irreducible.

It can be seen that a spiral graph is a maximal rfg (Result 7.1). However, spiral graphs are not
the only types of maximal rfg’s.

Let us first consider the method of finding a maximal rfg having a given dominator tree. We
find the maximal rfg having the given dominator tree by constructing the maximal rfg edge by edge
adding edges using the following rules:

1. From a node say:, add an edge to all the ancestors:ofn the dominator tree.
2. From a node say:, add an edge to all the children of.

3. For all the node pairém, n) where bothm andn have the same father, either add the edge
m — n or add the edge — m but not both. In any case, if the edge — n is added, also
add an edge from all the descendentsotfo  i.e. add edge from all the nodes in the subtree
rooted atm to n.
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4. In other words ifn{, no, ... ,n, all have the same father, then there exists an ordering among
these nodes say., no, . .. ,n;) such that there is an edge — n;,V;j > i. Further, for each
edgen, — n; there is an edge from all the descendents,db »;. Thus, we can say that there
is no edge of the form; — n;,j < 7. Thus, it can be seen that among the immediate children
of a node there exists a “natural” ordering. We will define the “natural” order formally a little
later.

5. Since self loops of the formn — m do not contribute to the reducibility or non reducibility,
for all nodes, sayn, add the self loopn — m.

In the above rules, the edges added using rule (1) and (beaieedgesthe edges added using
rule (2) are théorward edgesnd all the other edges armss edgesAddition of any more edge to the
graph will render it irreducible. So our construction indeed constructs a maximal rfg. The definition
of a maximal reducible flow graph suggests that the dominator tree of the maximal reducible flow
graph and hence of any reducible flow graph is an ordered treg, 4%, . .. , n, are the sons of any
node, then the ordering of the nodes is given(by, n, ... , ny) such that condition (4) is satisfied.
We calln; the leftmost child ana., as the rightmost child.

To find the maximal rfg of which the given rfg is a subgraph, we first find its dominator tree and
go on adding edges using the above rules. The only ambiguity about the addition of an edge is rule
(3), where we may have to decide which of the edges-> n orn — m is to be added. However,
this ambiguity can also be resolved easily by applying rule (4). We find the acyclic ordering of the
original graph and for each node, find the ordering of its immediate children such that the children
are ordered in the same order as they appear in the acyclic ordering of the original graph. Once this
ordering is formed, we add edges according to rule (4).

Example 6.2 As an example, Figure 6.4 shows a maximal reducible flow graph. The dark edges
corresponding to the dominator tree from which the maximal reducible flow graph was constructed.
The dotted edges are the edges added using rule (1) and the dash—dot edges are the edges added usin
rule (3). For simplicity, we have not shown the self loops.

Figure 6.4: A maximal reducible flow graph

Definition 6.2 A “natural” ordering among the immediate children of a node in the dominator tree
of any reducible flow graph is defined as an ordering among the nodes such that rule (4) in the
definition of a maximal reducible flow graph is satisfied.
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All the edges that are considered in rule (4) are forward edges. So to satisfy the rule (4), the
children of any node must be ordered in the same order in which they appear in the acyclic ordering
of the original graph. This “natural”’ordering turns out to be simply the acyclic ordering of the children
of the node.

Result 6.6 The first node visited during the postorder traversal of the dominator tree has a single
predecessor in the flow graph obtained from the maximal reducible flow graph for that dominator
tree by the application of &) transformation.

Proof:
We first define thgpostordertraversal of the dominator tree, as follows,

1. Visit the children of the node in their “natural” order, and

2. Visit the node

Now consider the first node visited during the postorder traversal of the dominator tree. From the
definition of postorder traversal, it is clear that this node is a leaf node of the dominator tree. Also, we
can say that it is the leftmost child of some node, or else, its left-sibling will be visited first and will
appear first in the postorder traversal. Since each time, the siblings of a node are visited in left to right
fashion, we can then say that the first node visited during the postorder traversal is that descendent
of the root of the dominator tree that is reached after traversing the leftmost edges until we can go no
further. Figure 6.5.

Figure 6.5: First node visited during postorder traversal

Now, if n is this node, then the only edges to nedadded during the construction of a maximal
rfg is m — n, wherem is the father ofn, added by rule (2) and the self loap— n added by rule
(5). For a leaf node, we cannot add any edge to it by rule (1) and alsovier cannot add any edge
to it by rules (3) and (4) since or any of its ancestors do not have left-siblings.

Now, when we apply &7 transformation to the maximal rfg for the dominator tree the edge
n — n Will be deleted. Thus, the only edge in the resulting flow graph to the nodié be the edge
m — n. Thus, in the resulting flow graph,has a single predecessar O

Result 6.7 Given a dominator treé, the flow graph obtained by the application of the above rules
is indeed reducible.
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Proof:
We show that the flow graph obtained from above construction is reducible by showing that it can be
reduced into a single node by repeated applicatich, @nd 7, transformations.

Consider that we construct the maximal rfg for the given dominator frdxy the application
of the above rules. Now let be the first node in the postorder traversalgfas defined in Result
6.6. Now from result 6.6, we know that after the application @f daransformationyn has a single
predecessor. So, we can now applysaransformation to the flow graph in which consumes..
After the consumption of by m, in the resulting flow graph (which will also be a maximal rfg)yif
has any more children, the next left siblingroin the old dominator tree will now be the first node to
be visited during the postorder traversalnifdoes not have any more children, therwill now be
the first node visited during the postorder traversal. In any case, in the resulting maximal rfg, we can
again apply the above argument and eliminate the first node. In this way, we go on applying alternate
T, andT; transformations, each time eliminating the first node visited during the postorder traversal.
Thus, we can always reduce any maximal rfg into a single node by repeated alternate applications of
T, andT; transformations. Hence, maximal rfg’s are indeed reducible. O

Result 6.8 Given a dominator treé, the flow graph obtained from the above rules is indeed max-
imal.

Proof:

We know that the addition of any additional edge in a maximal rfg renders it irreducible. Let us
suppose that? is the flow graph obtained frormy by the above rules. The only edges that were not
added during the construction @6ffrom D are as follows:

1. An edge from a node say to its descendents other than its children.

2. An edge from a node say or its descendents to its left-sibling or any descendent of its left
sibling.
3. An edge from a node to any of the descendents of its right sibling.
We show that the addition of any of these edge makes the flow graph irreducible. Consider the first

class of edges, i.e. from a node to its non-immediate descendent. We have shown in Result 6.5 that
addition of such an edge makes the flow graph irreducible.

Now consider the second class of edge. Figure 6.6.

Figure 6.6: The edgey — ¢

Let us add an edge from some descengerit. or n to m, wherem is a left sibling ofn. Clearly,
the edgevr — m is not a back edge as does not dominatg. So the edge — ¢ is a forward edge.
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Now the edgen — n (added to the max. rfg using rule (4)), the path froro p (added to the max.
rfg using rule (2)), and the edge— m form a cycle consisting of only forward edges. Thus the flow
graph obtained by the addition of the edge~ m is irreducible. If we add the edge — ¢, then
the edger — ¢ forms a path from a node outside the region consisting @ind its descendents to a
nodegq inside that region that does not contain the headeThis violates the fact that. dominates

q.
Now, in case of the third type of edges, an edge— p will again contradict the fact that
dominate9.

Thus, we have shown that the addition of all possible additional edges to a maximal rfg renders
it irreducible. Thus a maximal rfg is indeed a “maximal’” rfg. O

Observation In a maximal reducible flow graph, if we traverse the edge- n then

1. if m — nis a back edge, we reach a dominatorrof
2. if m — nis a forward edge, we reach an immediate ancestor.of

3. if m — n is a cross edge, we reach a node which is neither the dominator nor the immediate
child of m.

Now, given a rfg ofn nodes, suppose we want to add one more node to it to give a rfgrof
nodes. Let us suppose that we want the dominator tree of the old graph to be the subtree of that of the
new graph. Thus, we want to add a new node without disturbing the dominator tree. There-and
ways to do so:

1. Add it as the header to the old dominator tree

2. Add its as the son of one of tmenodes in the tree.

In any case, after the node is added, we can find the maximal rfg of the new graph using the
above rules.

The significance of a maximal reducible flow graph is that every reducible flow graphades
is a subgraph of some maximal reducible flow grapmofodes. Thus, if we want to prove any
property of reducible flow graph, thesroving that property for maximal reducible flow graphs is
sufficient Of course, the property must be such that if a certain graph has that property then every
subgraph of that graph has that property. Thus maximal rfg’s can be used to prove the upper and
lower bounds on the properties of reducible flow graphs. In our case, if the density of a ghaph is
then every subgraph of it also has a densityThus, proving that the densityof every maximal
reducible flow graph is
d < |logn]
will be sufficient to prove that the density of every reducible flow graph idogn |.

Result 6.9 Given a dominator treé, the number of different maximal reducible flow graphs cor-
responding to that tree are,

k
Hz:l(Sm'>
where (1, ns, ... ,n;) is the set of interior nodes in the dominator tree as) = number of
sons ofn; in the dominator tree.
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Proof:
Given an “unordered” dominator trée, the number of “ordered” dominator trees corresponding to
Dis
k
Hi:l (Sm'>
which can be obtained by simple combinatorics. Since each ordered dominator tree corresponds

to one maximal rfg, the above quantity is also the number of maximal rfg’s corresponding to the
dominator treeD. O

Thus, it can be seen that corresponding to a dominator tree, there exists a large number of maxi-
mal reducible flow graphs.

Definition 6.3 (Reachability) A noden is said to baeachablefrom a noden if n = m or there
is an edgen — n or there exists a node in the graph such that is reachable fronk andk is
reachable fromn.

Result 6.10 Each node in a maximal reducible flow graph is reachable from every other node.

Proof:

By definition of a reducible flow graph, in any flow graph each node is reachable from the initial node
no. Now, by construction of a maximal reducible flow graph, for each noohethe flow graph, there
exists a back edge — ny. Thus, the initial nodey, is reachable from every other node. Therefore,
by definition of reachability, every node in a maximal reducible flow graph is reachable from every
other node. O

Result 6.11 A depth first traversal of the dominator tree of a maximal reducible flow graph (and
hence of any graph) gives its acyclic ordering.

Proof:
Obvious O

Observation Thedagof a maximal reducible flow graph corresponding to the dominatorirése

the flow graph obtained by adding edges using only the rules (2), (3) and (4). This is obvious because
the dag of a flow graph is a subgraph of that flow graph containing all the nodes and all the edges
except the back edges, as stated in Result 2.3.

Observation We know that in general, a flow graph can have more than one acyclic orderings.
However, in case of a maximal rfg, we anticipate that each maximal rfg will have a single unique
acyclic ordering. This can be easily seen by considering the following fact:

1. Find thedagof the flow graph. Its topological sort will give the acyclic ordering.

2. Initially, only the root node has no predecessor, so it is listed and then removed from the graph.
After that the only node that has no predecessor is the leftmost child of the root.

3. Once this leftmost child is removed, the only node that now has no predecessor is the leftmost
child of this node. If there is no leftmost child of that node, then the next right sibling is the
only node that has a single predecessor and so on.

Thus, during the topological sort of the dag of a maximal rfg, at each stage there is just one node
that can be listed next, giving a unique acyclic ordering. It is nothing but the depth first traversal of
the dag.
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6.3 Paths in Maximal Reducible Flow Graphs

Definition 6.4 (Redundant Paths)  Given a listL of acyclic paths in a flow graph, the paih,
ng, ..., ny IS said to beedundantf there exist some other path,, m,, ... ,m; suchthat,,... ,n;
is a subsequence of,, ... ,m;.

Thus, it can be seen that when considering the redundant paths, the first node is ignored. This is
because we will be considering all paths that begin with a back edge and also we assume an “initial”
traversal of the graph.

Definition 6.5 (Non Redundant List) A list L of acyclic path in a flow graph is said to ben-
redundantf no path in the listZ is redundant.

Result 6.12 All non-redundant path in a maximal reducible flow graph that begin with a back edge
start at a leaf node of the dominator tree of the maximal reducible flow graph.

Proof:

We first prove that an acyclic path in any reducible flow graph that begins with a back edge cannot
contain any of the descendents of the first node of the path in the dominator tree. Let us assume that
there exists an acyclic path in the reducible flow graph that begins with the backedge: and
contains a descendahtof the first noden in the path. First of allp # m or else the path will not

be acyclic. So clearly. is an ancestor of: in the dominator tree as — n is a back edge. Let the
portion of the acyclic path from to £ be A. So we now have an acyclic patin Ak. Now consider

a path from the initial node, of the graph (i.e. the root of the dominator tree)itéhat does not
containm. Clearly, such a path does exist, or elsglominates: and sincen # n, m — n will not

be a back edge. Let the path framton be X. So, we can say that ¢ X. Now consider the path
noXnAk as shown in Figure 6.7.

Figure 6.7: Acyclic Path in a Flow Graph

Clearly,m ¢ X, m # n, m ¢ Aandm # k. Alsom # n, as there cannot be a back edge
in a reducible flow graph that begins with the initial nodge Thus the pat,Xn Ak is a path from
the initial noden, to nodek that does not contain the node This contradicts the fact thatis a
descendant afz in the dominator tree i.e. the fact thatdominates:. Thus our original assumption
about the existence of such a path is wrong. Therefore, we can say that any acyclic path in a reducible
flow graph that begins with a back edge cannot contain any of the descendents of the first node in the
path.

Now, consider an acyclic path in a maximal reducible flow graph that begins with a back
edge and whose first node, sayis not a leaf node. Since: is not a leaf node, it has at least one
descendant. Let be some descendantof such that: is a leaf node. Now by the above result, we
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can say thaf, does not contaik. Secondly, by definition of a maximal reducible flow graph there
exist a back edgé — m in the maximal reducible flow graph. Now consider the path as shown
in Figure 6.8.

Remaining Path

Figure 6.8: Acyclic Path Beginning With a Leaf Node

Clearly this is an acyclic path that begins with a leaf node of the dominator tree. Also, it is
obvious that the path becomes redundant in the presence of pdthSince the node: and the path
L was chosen arbitrarily, we can say that for every acyclic path in a maximal reducible flow graph
that begins with a back edge and whose first node is not a leaf node, there exist some acyclic path
that begins the with a leaf node of the dominator tree in whose presence, the original path becomes
redundant. Therefore, we can conclude that an acyclic path that begins with a back edge and whose
first node is not a leaf node of the dominator tree cannot be present in the list of no-redundant paths.
As a result, all the non-redundant paths in a maximal reducible flow graph that begin with a back
edge start at a leaf node of the dominator tree. O

Result 6.13 A subgraph of a maximal reducible flow graph consisting of a node all its descendents
and the edges between them is a region.

Proof:

We know that a region is a subgraph of a flow graph such that every path from the initial node to a
node in the subgraph contains the header of the region. Thus, in case the the subgraph is the subgraph
consisting of a nodé and all its descendents, then it follows by definition of dominance that every
path from the initial node to a node in the subgraph will be throlgiAs a result, we can say that

a subgraph of a maximal reducible flow graph consisting of a node and all its descendents in the
dominator tree form a region. O

Result 6.14 In a maximal reducible flow graph, if we traverse the cross edge: n, then the path
from that point onwards, the path will not contain any of the descendents of

Proof:

Consider an acyclic path containing the cross edge» n. Clearly,n is not a child ofm. Also, n

is not any other descendantaf by definition of a cross edge. Thusis a certain node outside the
region formed bymn and its descendants. So, we know that any path from outside a region to any
node of a region must contain the header of the region. Thus if the path contains some descendant of
m, it must also contaim: somewhere aftet. This contradicts the fact that the path is acyclic. Thus

our assumption is wrong. O
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Now, we have already proved that an acyclic path beginning with a back edge cannot contain
any descendents of the first node of the path. We can unify these results as follows.

Result 6.15 An acyclic path in a maximal reducible flow graph that begins with either a back edge
m — n Or a cross edgen — n cannot contain any descendentsof

6.4 Regions in Maximal Reducible Flow Graphs

In this section we examine some properties of regions with respect to the maximal reducible flow
graphs.

Result 6.16 In any reducible flow graph, if we replace a nokléy a regionR, then the dominator
tree of the new flow graph can be obtained by replacing the hodethe dominator tree of the old
graph by the dominator tree of the regidt

Proof:
Obvious O

Result 6.17 Let h be some node in the dominator tree of a maximal reducible flow graph and
suppose we are interested in finding a regiBrwith headerh. Let k be some child of in the
dominator tree. Then, if we include noélen R, the entire subtree of the dominator tree rooted:at
must be included k.

Proof:
Let us suppose that we add a ndd® the regionk with headerh. k is the child ofh in the dominator
tree. Let]" be the subtree of the dominator treefofooted atc. See Figure 6.9.

Figure 6.9: Region consisting the child of the header

Now, from the paper of Aho and Ullman [4], if there is an edge— n in the flow graph and
is in aregionRk, n # h, h being the header of the regidty themm is in R.

Now, in a maximal reducible flow graph, there is a back edge from all the descendents of a
node to that node by construction. Thus, in this case, there exists edgesk,Vm € T. Also,
k € R,k # h. So applying the above result, € Rvm € T. Thus the subtree of the dominator tree
rooted att has to be included . O

Result 6.18 Let h be some node in the dominator tree of a maximal reducible flow graph and
suppose we are interested in finding a regi@nwith headerh. Letk be some child ok other than
the leftmost child. Then, if we includen R, we have to include all the left-siblings bin R.
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Proof:

Let us suppose that we includein region R. Now let (ko, k1, ... , k,—1) be the left siblings of

in the dominator tree. Now by construction in a maximal reducible flow graph, there exists edges
k; — k,0 <i<n-—1.So, by the argument in [4] all the left siblings bhave to be included i®.

Now, by virtue of Result 6.17, when we include a nddé the region,k # h, then all the
descendents of also have to be included in the region. Thus, when we include a hadehe
region, we have to include all the left siblings as well as the subtrees rooted at them in the fégion.

Definition 6.6 (Feasible Region) Let R = (N, E, h) be a region in a reducible flow graph and
let Ry = (N1, Ny x Ny N E| hy) be asubregion oR. Let R, = (Ny, No x Ny N E) be the subgraph
of R not containing the nodes iR, i.e. N\, = N — N;. Then the regiorR; is afeasibleregion if and
only if R, is a region.

It can be easily seen that R, is feasible, thenR, is also feasible and that a pair of feasible
subregions forms a parse of the given maximal region.

Result 6.19 Leth be some node in the dominator tree of a maximal reducible flow graphk bet
the region consisting and all its descendents in the dominator tree. Uat ks, . .. , k,) be all the
children ofh in their “natural” order. Let R, be the region consisting @f, and all its descendents.
ThenR; is a feasible region.

Proof:
See Figure 6.10. We know that and all its descendents form a region. THsis a region. Now

Figure 6.10: Region with rightmost child as header

to show thatR; is feasible, it is sufficient to show that, consisting of all the remaining nodes is a
region. To show that, we first note that in a maximal rfg there exists anx@dgeh in RVm € R;.
Apart from that, there does not exist any other edge of the farm n,m € Ry,n € R,. Thus all
the edge fromR; to R, are to its headek. ThusR; in indeed a region. Henck; and thereforeR;
is a feasible region. O

Result 6.20 Leth be some node in the dominator tree of a maximal reducible flow graphk bet
the region consisting df and all its descendents in the dominator tree. gt ks, . .. , k,) be all the
children ofh in their “natural” order. Let R, be the subgraph consisting of any two childégrand
k; and all its descendents. Théh is not region.

Proof:
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Figure 6.11: Two children forming a region

See Figure 6.11. L€t, be the subgraph dt containing nodes;, k£; and their descendents.Since
k; andk; are the children of, by definition, there exists the edgks— k; andh — k;. Thus the
subgraphR; has two entry points from outside it. SB; cannot be a region and hence it cannot also
be a feasible region. O

Result 6.21 Let a maximal regiorR be divided into two region&; and R, such thatR, dominates
R;. Then the header ok, is the rightmost child of the header &% in the dominator tree oR.

Proof:

- —— - — —

Figure 6.12: Division of a region into two regions

See Figure 6.12R is a region divided into two subregiorg, and R, with headers; andh,
respectively. AlsoR, dominatesk,. Because of this, the headeey of R, is nothing but the header
h of the original regionk. Sinceh dominates all the nodes iR, h, dominates all the nodes iR, as
well as all the nodes ;. So, clearlyh, dominates:;. Also, h, is the immediate dominator af.
To see this, let us suppose that there is an immediate dominatat,sdy, of h; andd # h,. Then
every path fromh, to h; must pass througi. But there exists an edge — h., giving a path from
hs to hy that does not contaish. Thus our assumption about the existence of nbdenrong. Hence
hs is the immediate dominator a&f; in the dominator tree oR.

Now in a maximal region, there exist edges from all the nod€s,ito h,. There edges are the
back edges and can be accounted for as the edge from a node to its dominator in a maximal rfg. Next,
there is an edgk, — h; which can be accounted for as an edge from a node to its child in a maximal
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rfg. Also, there are edges from nodeshp to the headeh, of the regionR;. Clearly, these edges

are not back edges as does not dominate any nodei3. So these edges are forward edges. These
edges can be accounted for as edges from the left siblings of a node and their descendents to that
node in a maximal rfg. Thus, all the nodesi3 excepth, are either the left siblings of; or the
descendents of some left sibling/of. So these nodes must be on the lefbpfn the dominator tree.

So,h; must be the rightmost child @f, in the dominator tree oR. O

These results will be used further to show that the two characterizations of spiral graphs that we
have developed viz. Result 6.1.2 and section 7.2 are identical.

Result 6.22 Every maximal reducible flow graph has a unique parse.

Proof:

It can be observed that a given maximal reducible flow graph can be parsed in a single way as given
in Result 6.21. The parses themselves are maximal regions. Applying result 6.21 inductively to them,
the result immediately follows. O

6.4.1 Synthesis of Reducible Flow Graphs

In Chapter 2 we have defined reducible flow graphs and given a flow graph, we can find whether
or not it is reducible. This is the analysis aspect of the problem. But what about the synthesis or
construction of reducible flow graphs? Researchers have proposed methods of constructing reducible
flow graphs, but these methods are either not general (they do not generate all possible reducible
flow graphs, e.g. spiral graphs) or are based on the inverge afd7; transformations as we will

be defining in Chapter 9. The conceptrofiximal reducible flow graphs can be thought as a new
method of synthesizing reducible flow graphs that is general and is based on the dominator tree of
the flow graphs

Any reducible flow graph can be generate by first constructing the maximal reducible flow graphs
and then removing selected edges from the graph, taking care that in the resulting flow graphs, re-
moving all the back edges, the flow graph is such that all nodes are reachable from the initial node.
This method allows us to construct arbitrary reducible flow graphs that may seldom occur practically.

6.5 Partial Ordering in Reducible Flow Graphs

6.5.1 The Dominance Relation

We know that a nodé€ of a flow graphdominateshoden, written asd dom m if every path from the
initial node of the flow graph ta goes through.

Now it can be easily seen that this definition implies a dominance relationship among the nodes
of the flow graph. We represent this relationship symbolically by<tre&gn. Thus, in a flow graph
d < m if d domm. This dominance relation is

1. reflexive since all nodes, n < n i.e. every node dominates itself.

2. transitive since ifa < bandb < ¢ = a < ci.e. if a dominates) andb dominates:, thena
dominates:.
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3. antisymmetricsincea < b = b £ a, unlessa = b i.e. if a andb are distinct, then either
dominates or b dominates:, but not both.

Thus, the dominance relation on the nodes of a flow graph is reflexive, transitive and antisym-
metric i.e. it is apartial ordering relation Now each partial ordering relation can be represented
by aHasse diagramn which there is a sequence of arrows franto b if and only if a < b and the
diagram is drawn is such a way that all the arrow heads point upwards. In case of flow graph, the
Hasse diagram is nothing but the dominator tree of the flow graph drawn inverted with the root at the
bottom

6.5.2 Some Results Based On Partial Ordering

We can now immediately make some observations about the reducible flow graphs by considering
the dominance relationship

1. The set of node#’ in the reducible flow graph and the dominance relatiohfom a partially
ordered setgosej, represented as\, <).

2. If H is the height of the dominator tree, then the length of the longeshin the poset §V, <)
is nothing butH .

3. Theminimal elemenbf N is the root §,) of the dominator tree, since for toe N,b #
ng, b < ng i.e. there is no node # n, such thab dominates:,.

4. Themaximal elementsf V are nothing but the leaf nodes of the dominator tree sinkasfa
leaf node of the dominator tree then forlhne N,b # k, k < bi.e. there is no node # k such
thatk dominates.

5. The posetl, <) cannotpossibly from dattice. This is because given two element$ € N,
such that neithed < b norb < a we can find theigreatest lower bountut these two element
cannothave any common upper bound. If the nodesndb have any common upper bound
i.e a nodek such thate < k andb < k thena dominatess andb dominatest. Then either
a dominates (or else there is a path in the flow graph fremto £ that does not contaia,
contradicting the fact that < k) or b dominates: (or else there is a path in the flow graph from
no to k that does not contaily contradicting the fact thdt < ). This contradicts the fact that
neithera < b norb < a. Thus we cannot find the least upper bound of two unrelated elements
in (N, <). Therefore, {V, <) cannot form a poset.

6. We know that in a partially ordered séY (<), if the length of the longest chain in, then the
elements ofV can be partitioned into disjointantichains In case of reducible flow graphs the
length of the longest chain is the heigtitof the dominator tree. Thus, the nodes in a reducible
flow graph can be partitioned intd disjoint subsets such that for any two distinct elements
andb belonging to the same subset, neithet b norb < a.

6.5.3 Antichain Method for Matrix of Levels

Let us first define the matrix of levels for the given flow graph.
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Definition 6.7 (Level of anode) If m — n is a back edge in a non-redundant acyclic path in a
flow graph, then théevel of noden is the number of back edges covered in reaching the path
beginning at the first node.

Definition 6.8 (Matrix of Levels)  Thematrix of leveldor a flow graph is a matrix indicating the
levels of the nodes in the flow graph. It consistsiabws, d being the depth of the flow graph. A
noden is in row (i.e. level): iff its level is i in some non-redundant acyclic path in the flow graph.

Observation It has been observed that there is a certain relationship between the matrix of levels of
a maximal rfg and its dominator tree. We know that the dominator relation induces a partial ordering
among the nodes of the flow graph. If the height of the dominator tréetisen the length of the
longest chain in the posélV, <) is h. Thus, there existd antichains in(V, <). We can form these
antichains as shown in the Figure 6.13.

Figure 6.13: Antichains in the dominator tree

Now let us number the nodes in the longest chain starting with the leaf and working towards the
root. The leaf is assigned the numhbeand continuing the root is assigned the numbheNow each
antichain formed will contain exactly one element of the longest chain. Let the antidhaontain
element; of the longest chain. Then it has been observed the thed@f¢he matrix contains all the
nodesN — Az U Ai—l U... UAl

Also, we can observe that at each level, the antichain consists of all the leaf nodes of the domi-
nator tree.

From the above observation, we can immediately give an algorithm to find the matrix of levels
for a maximal rfg, given the dominator tree of the max rfg. This algorithm can be used to find the
matrix of levels for a maximal rfg by directly looking at its dominator tree instead of first finding the
list of non-redundant paths and then finding the matrix.

6.5.4 Antichain Method for Heuristic Node Listings of Maximal rfgs

In this section, we give the relationship between the antichains in the dominator tree and the node
listing produced by the simplified heuristic node listing prograhefristic ).



6.5 Partial Ordering in Reducible Flow Graphs 51

1. /* D is the dominator tree of the maximal rfg */
[* h is the root of D */
level := 1 ; /*initial level */
while D is not empty do
print level,
print all non leaf nodes in D ;
remove all leaf nodes from D ;
level :=level + 1 ;
end while

Algorithm 6: Finding the matrix of levels for max rfg

Let the dominator tree be partitioned inkodisjoint antichains as before. Then we give two

equivalent methods of finding the heuristic node listing for the maximal rfg corresponding to that

dominator tree. These methods always givel d, whered is the depth of the maximal rfg (i.e.
h —1).

Method 1

1. Find the antichains in the dominator tree and label theryad,, . .. , A,.
2. For all the antichaing, A,, ... A,_; do step 3.

3. Given an antichainl;, for all nodes; in A; do the following: at level, list all the nodes iD
exceptn; and its descendents.

Method 2

This method is a refinement of Method 1. 7if andn, are two nodes in a certain level, then by
definition of an antichain, none of the one dominates the othernSandn, do not have common
descendents. So when applying the rules of Method, Jand its descendents will be listed when
applying the rule ta, andn; and its descendents will be listed when applying the rute tdn other
words,if antichain A; has two or more elements, then that level has all the nodes in the graph

If the antichainA; is singleton consisting of only;, then leveli does not contaim and its
descendents. This leads to the following method.

1. Find all the antichains in the dominator tree and label thefyad,, ... , A;.
2. For antichainsi,, A,, ... , A,_1, do step 3.

3. If A; is singleton consisting of only;, then list at level all nodes except; and its descendents,
else list all the nodes at level

This method of generating heuristic node listings is computationally much more efficient than the

method of first finding all the acyclic paths in the flow graph that begin with a back edge, eliminating
the redundant paths and then finsing the node listing.

As an example of this method, consider the maximal rfg corresponding to the dominator tree

shown in Figure 6.14.

The node listing for this maximal rfg is as follows:
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Figure 6.14: Heuristic node listing of maximal rfg

| Level | Nodes |

012345678910
01234567
0123456
0123

012

0

OO WNBE

e A, is non-singleton, so levél has all the nodes.
e Level2 does not contais and its descenden$s 10.

e Level 3 does not contaifi and its descendengs9, 10 and so on.

6.6 Binary Parsable Reducible Flow Graphs

As seen in the previous chapters, the only reducible flow graphs for which we can saythag »n
are the spiral graphs with all the nodes added by rule (2b). In this section, we introduce a more
general class of reducible flow graphs for which the density is provably bounded by

Definition 6.9 (Binary Parsable rfgs) A binary parsable reducible flow grapbf 2" nodes is a
reducible flow graph o2™ nodes and is defined as follows.
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1. Asingle node with no edge is a binary parsable rfg.
2. A spiral (2b) graph o2™ nodes is a binary parsable rfg.

3. If a reducible flow graplix of 2" nodes can be parsed into two regidRsand R, each with
2"~1 nodes and?, and R, themselves are binary parsable rfgs, theis also a binary parsable

rfg.

Thus, it can be seen that a binary parsable rfg is either a (2b) spiral graph or can be parsed into
two regions each having half the number of nodes. It can be easily seen that there exist reducible
flow graph that are not binary parsable viz. a spiral graph with the last node added using rule (2a).
Nevertheless, the class of binary parsable flow graphs is more general than the class of spiral (2b)
graphs.

Result 6.23 For every binary parsable rfg af* nodesy < n.

Proof:

We will prove this result by induction on. As the basis of induction, a single node has density O,
which trivially satisfies the result. Now consider a binary parsable rfg @ithodes,n > 0. If it

is a (2b) spiral graph, we have already proved that for spiral (2b) graphsog n. In case it is not

a spiral (2b) graph, then it can be parsed into two regi@nsnd R, each with2"~! nodes. Let us
assume without loss of generality that dominatesR?;. Then this parse is as shown in figure 6.12.

Now any path that begins iR;, entersR, and again enter®; is contained inR; R»R;. Any
path that begins ik, entersRk; and again enterg; is contained iRy Ry Ry. Thus, Ry Ry Ry R, . By
the inductive hypothesis, each Bf and R, has a density’ < n — 1. Therefore, the density of the
original graphisgivenby <n—-1+1= 6§ < n. O

6.6.1 Constructing Binary Parsable Flow Graphs

In this section, we describe one method of constructing binary parsable reducible flow graphs. This
method is based on the fact that a maximal rfg can be partitioned into regions in a unique was, as
stated before. The method of construction can be stated in a single line as,

To construct a binary parsable rfg @ nodes, take two binary parsable rfgs #f! nodes, say

R, and R,. Attach the root of the dominator tree &f as the rightmost child of the root of the domi-
nator tree ofR, and construct the maximal rfg for the dominator tree so formed. This maximal rfg is
binary parsable.

As an example, the figure 6.15 shows the construction of binary parsable flow graph of 2, 4 and
8 nodes.

6.7 Weak Node Listings for Maximal Rfg’s

In this section, we present some results regarding weak node listings for maximal reducible flow
graphs.

Result 6.24 In a maximal rfg, any basic path can have at most one back edge.
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Figure 6.15: Construction of Binary Parsable Reducible Flow Graphs

Proof:
A basic path in a flow graph is an acyclic pdth, s, ... ,xx), k > 1 such that there is no shorter
acyclic path frome; to z;, which is a subsequence @f;, zo, . . . , zx). Now consider that a basic path

in a maximal reducible flow grapfi contains2 or more back edges. Let the first of these back edges
bea — b and the second be— d. Thus, the path can be represented’as P,cd P;. Therefore, by

the generalization of Lemma 2 in [4] (Result 8.7 Jominates:.. Now, by construction, in a maximal
rfg, there exists the back edge— d. Now the pathP,adP; is a path contained i#; abP,cd P; and
having the same source and destination as before. This meanB, iid&tcd P; cannot be a basic
path. O

Result 6.25 For every maximal rfg ofi nodes, there exists a weak node listing of lerigth

Proof:

From Result 6.24, any basic path in a maximal rfg can have at most 1 back edbis thie acyclic
ordering of the maximal rfg, then it can be easily seen that all the basic paths in the maximal rfg are
a subsequence ofA. Thus,AA is aweak node listindgor the maximal rfg and its length i%:. [

The significance of the above result is limited sincé&ifis a subgraph of7, it does not neces-
sarily imply that the weak node listing f@¥ is also a weak node listing fa¥’.

6.8 Applications of Maximal Reducible Flow Graphs

In the previous sections, we have derived many interesting results and properties of maximal re-
ducible flow graphs. In the next chapter, we are going to examine one particular type of maximal rfg
viz. spiral graphs and their properties. It can be seen that a maximal rfg has a very well defined and
fixed structure. This introduces regularity in the properties of maximal rfg. We can derive many prop-
erties of maximal rfg by exploiting this regularity in the structure of a maximal rfg. Some possible
applications of maximal reducible flow graphs can be,



6.8 Applications of Maximal Reducible Flow Graphs 55

e To derive or prove the upper or lower bounds on the properties of reducible flow graphs
As we have seen, every reducible flow graph is a subgraph of one or more maximal reducible
flow graph. Thus, any arbitrary rfg is contained in some maximal rfg. Thus, if we want to
derive or prove any property for rfgs is sufficient to prove that property for maximal rfg’s
Of course, the property must be such that if a flow gréphas that property, every reducible
sub-flow graphG’ of G also has that property.

e To analyze various data flow analysis algorithms
Since maximal rfgs are the “largest” of all the reducible flow graphs, we conjecture that various
data flow analysis algorithms may show worst/best case behavior when they perform analysis
on maximal rfgs. A study of the behavior of these algorithms in relation to maximal rfgs may
enable us to improve the worst case time complexity of these algorithms.

e For comparison study of various data flow analysis algorithms
A large number of data flow analysis algorithms are available today. For worst case comparison
study, we feel that a comparison of these algorithms on the basis of their behavior on maximal
rfgs may be sufficient.

e As a measure of program complexity
The number of nodes in the flow graph along with the degree of “closeness” of the given re-
ducible flow graph to maximal rfgs can be used as a measure of the complexity of the program.
The “closeness” may be measured in terms of the number of edges that are needed to be added
to the given flow to convert into a maximal rfg.

In addition, during the course of the discussions, we have also found that the maximal rfgs are useful
for verifying our conjectures or to provide contradictions to the things we propose.

As an example of the use of maximal rfgs in proving the upper and lower bounds, we prove that
the number of acyclic orderings of a given reducible flow graph is a lower bound on the number of
parses it can have. We know that the parse of a reducible flow graph is nothing but the its division
into regions. This is done so as to impose a hierarchical structure on the flow graph. Different parses
may lead to different interpretations of the same program, from the control flow analysis point of
view. Intuitively, a simple program has many different interpretations and a complex on has fewer
interpretations. Thus, more the number of parses, simpler the program and vice versa.

Now, we know that every reducible flow graph is a subgraph of some maximal reducible flow
graph. Also, a reducible flow graph can be a subgraph of more than one maximal rfg. We have said
that the number of maximal rfgs of which the given rfg is a subgraph is equal to the number of acyclic
orderings of the given rfg. However, it has been practically observed that apart from these maximal
rfgs, a given rfg can be a subgraph of some more rfg’s as well. The dominator trees of these maximal
rfg’s is different from any “ordered” dominator tree of the given rfg. Thusyjf is the number of
acyclic orderings of the given rfg and,, is the number of maximal reducible flow graphs of which
the given rfg is a subgraph, thev,; > N,4. Now it can be easily seen that each maximal rfg of
which the given rfg is a subgraph corresponds to a different parse of the given rfg. Thus, the number
of parses of the given rfg is given by, = N,;. HenceNp > N4. Thus,the number of acyclic
orderings of the given rfg is a lower bound on the number of parses it can have

One important point that come out is regarding the complexity. We can say thatriiy@exity
of the program is inversely proportional t§,,. Consider a maximal rfg itself. Since it has a unique
parse,N,; = 1 and henceV,, has the smallest value for maximal rfg and hence the maximal rfg



6.9 Density, Node Listings and Maximal Rfg’s 56

corresponds to the most complex programs.Mg for the given rfg increases, its complexity drops
down.

6.9 Density, Node Listings and Maximal Rfg’s

As we have seen previously, every reducible flow graph obdes is a subgraph of some maximal
rfg of n nodes. As a result, evestrongnode listing for a maximal rfg is also a strong node listing
for every subgraph of it. Thus, tlteensities of maximal reducible flow graphs are an upper bound on
the densities of arbitrary reducible flow graphBhus, to prove that < logn for any reducible flow
graph, it is sufficient to show that the result is true for all maximal rfgs. We hope that dealing with
maximal rfgs will make the proof easier to tackle. We first state the following simple result.

Result 6.26 Thed is the density of a maximal rfg with a dominator tree of heigtitens > |log h].

Proof:

If h is the height of the dominator tree of a maximal €gthen the subgraph of G formed from
theh nodes in the longest chain is a spiral grapt ofodes, all added using rule (2b). Now, for (2b)
spiral graphs, we have already proved that= |logk|. SinceS is a subgraph of7, it follows that
forG,6 > 05 = § > |logh]. O

Also, from the construction of a maximal rfg, it can be seen that the dominator tree of a flow
graph is one of its important properties. Also, the depth of the flow graph is bounded from above by
the height of the dominator tree, sinéde< h — 1, h being the height of the dominator tree. Some
experimentation along with the observations regarding maximal rfgs suggest that the density of a
reducible flow graph is bounded by< log (d + 1), which is a more stronger bound thiag n. Thus,
the concept of maximal rfgs have not only motivated us to shift our concentration on the dominator
tree and the dominator relationship in the flow graphs but also have enabled us to arrive at a stronger
bound on the densities of flow graphs than the previous one.

gon



CHAPTER

Properties of Spiral Graphs

In this chapter, we examine the properties of spiral graphs in relation to our newly formed concept of
maximal reducible flow graphs. In particular, we show that spiral graphs are special type of maximal
reducible flow graph and then examine some properties of spiral graphs.

7.1 Spiral Graphs are Maximal Reducible Flow Graphs

Result 7.1 A spiral graph is a maximal reducible flow graph.

Proof:

We will prove this by induction om, the number of nodes in the spiral graph.= 1 andn = 2

are trivial cases as no additional edge can be added to these spiral graphs. Now consider a spiral
graph ofn = 3 nodes. There arg! x 23~! spiral graphs oft nodes. Now, it is obvious that we

need not consider the isomorphic spiral graphs. As a result, what is needed is just to ch&ck the
spiral graphs when nodes are added in the sequende say. ,n — 1. Thus, for3 nodes, there are

23-1 = 4 spiral graphs that need to be checked. It can be shown that for all these graphs, addition of
the only possible additional edge renders it irreducible. Thus, we have proved the above statement
forn = 3.

Induction Hypothesid_et us assume that the statement holds true for any spiral graph having
nodes.

Induction StepNow consider a spiral graph ennodes forn > 3. It can be constructed by adding
then' node to a spiral graph of — 1 nodes, say>. In that case any additional edge belonging:to
itself will make the original spiral graph®) and hence the new graph irreducible.

Now, Consider that the' node is added using rule (2a). (Figure 7.1-a) Any additional edge in
the graph must be of the form— x, wherex € G, x # ny. Let us consider that the addition of such
an edge does not cause the graph to become irreducible. Now consider the two edges — .
They form a cycle. Now the edge— n is a forward edge by definition of a spiral graph. 86> «
must be a back edge. Thereforedominates:. So every path from the initial node, to n must
containz. However, there is a direct edge fratg to n. Therefore, our original assumption is false.
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@) (b)

Figure 7.1: Adding a node to a spiral graph

Thus, addition of any additional edge will make the graph irreducible.

Now, consider that the'" node is added using rule (2b). (Figure 7.1-b) Any additional edge in
the graph is of the form — z, wherez € G,z # ny. Let us consider that the addition of such an
edge does not cause the graph to become irreducible. Now, we kno ifs&lf is a spiral graph, so
thatn, dominates all the nodes = € G, x # no. However, addition of the edge of the fonmn— =
creates a path from the headeto x which does not include,. This contradicts the fact that,
dominates all node x; € G, x # ngy. Thus our original assumption is wrong. Thus, the addition of
any additional edge in this case too renders the graph irreducible. O

7.1.1 How are spiral graphs a special case of maximal rfg’s ?

From the above theorem, we can see that spiral graphs are really special type of maximal reducible
flow graphs. Consider adding a node using rule (2a). See Figure 7.2. This can be thought of adding
the new node as théghtmostson of the header, and for each serof the headern # (newnode)

add the edgen — (newnode). At the same time, add the edges from the nodes in the trees rooted
at all the sons of header to (new node). In Figure 7.2 the original graph is shown in dark edges. It is
a spiral graph with nodes added in the ordgt, 2, 3 all using rule (2a). The Figure shows how the
addition of nodel by rule (2a) can now be visualized as adding the nbds the son of the header

The dotted edges are the ones that will be added in this case.

Figure 7.2: Adding a node using rule (2a)

Consider adding a node using rule (2b). See Figure 7.3. This can be thought of as adding the
new node as the header of the dominator tree. Then theredgen, is added using rule (b), edge
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from previous nodes to n are added using rule (a). In Figure 7.3, the original graph is a spiral graph
with nodes added in the orderl, 2 all using rule (2b). The figure shows how the addition of ndde

by rule (2b) can now be visualized as adding n8des the header of the original graph. The dotted
edges are the one that will be added in this case.

Figure 7.3: Adding a node using rule (2b)

Thus, out ofn + 1 possibilities, spiral graphs consider only two possibilities of adding a node
and when adding using rule (2a) for spiral graphs, the rule (c) is being applied in a still restricted
manner. Thus a spiral graph is more restricted that a maximal rfg. In other words, a spiral graph is a
special kind of maximal rfg.

7.2 Properties of Spiral Graphs

Result 7.2 A node added to a spiral graph using rule (2a) is a leaf node of the dominator tree of
the spiral graph.

Proof:

We will prove this result by examining the effect that the addition of a node to a spiral graph has on
its dominator tree. If we add a node, say to the spiral graph using rule (2a), the noddecomes

the rightmost son of the headeof the graph, as shown in Figure 7.4. On the other hand, if the node

m IS added to the spiral graph using rule (2b), it becomes the father of the header of the graph, as
shown in Figure 7.5.

_

L

Figure 7.4: A node added using rule (2a)

Now consider that a node: is added to the spiral graph using rule (2a). It will then become
the son of the current header of the graph. Now any additional nodes added to the spiral graph (after
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Figure 7.5: A node added using rule (2b)

nodem) using rule (2a), will clearly become the sons of the current hea@ded not ofm. The first

node , say, added to the graph by rule (2b) after the addition of nedeill become the father of

the headeh of the graph. Now if any nodes are added using rule (2a), they will become the children

of £ and so on. Now since a node can be the child of at most one node, we can say that none of the
nodes added to the spiral graph after the addition of a node by rule (2a) can become the children of
that node. Since node of the nodes added to the spiral graph before the addition of a node can be the
children of that node, we can say that if we add a node to a spiral graph using rule (2a), that node will
not have any child in the dominator tree i.e. it will be the leaf node of the dominator tree. [

Result 7.3 A node added to a spiral graph using rule (2b) is always the leftmost child of its father
and is never a leaf node of the dominator tree.

Proof:

The second part of the result is obvious. When we add a node using rule (2b), we add it as the father
of the current header of the graph. Thus clearly that node has a son and hence it is not a leaf node of
the dominator tree. To prove the first part, let us assume that a nodewayg added to a spiral graph

using rule (2b). Now if we add any additional nodes using rule (2a), these will become the children
of m and hence we need not consider them. In case we do not add any node a$ieg rule (2b)n

remains the header of the graph for which the above statement is trivially true. Now consider a node
k added to the spiral graph using rule (2b)will now become the header of the graph andavill be

the child ofk. Now, only those nodes that are added using rule (2a) will be in the same level as

By the previous observation, these nodes will be added as the rightmost anshafs we can see

thatm is the leftmost child of:. O

From the above results, we can immediately say that the dominator trees of spiral graphs are
characterized by the following properties (Figure 7.6)

e All the nodes at the same level have the same father.

e At each level in the dominator tree, theraatsmost one nodehich is not a leaf node and that
node is the leftmost son of its father and it is added using rule (2b).

¢ All the other nodes in that level are leaf nodes and are added using rule (2a).

Result 7.4 The above characterization of spiral graphs and the one stated in Result 6.1 are identi-
cal.

Proof:
We recall from Result 6.21 that if a maximal regiéhis divided into two subregion®; and R,
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Figure 7.6: The dominator tree of a spiral graph

with headers:; andh, respectively and?, dominatesR;, thenh, is the rightmost child of., in the
dominator tree oRR. Conversely, we can say that given a maximal redgipme can divide it into two
regions in only one way, such that the rightmost child of the header and all its descendents for one
region, sayR,; and the remaining nodes form another region, Baysuch that?, dominatesR;.

Now, in case of spiral graphs, let us first show that if maximal rfg has a dominator tree as char-
acterized above, then it can be divided into a series of singleton feasible regions. Let us consider the
header, of the dominator tree . Lét;, ko, . .. , k,, be the children of in their natural order. To begin
with £, alone is a feasible region, as the remaining nodesii.k,, ...k, ; and their descendents
form a region. Thus the original spiral graph can be divided into two regions of which one is single-
ton. We apply the same argumentito |, k,_1, ...k, and divide each of the intermediate regions
into two regions, one of which is singleton. See Figure 7.7. We will finally reach a stage when

Figure 7.7: Division non-leftmost children

has a single child;. In this casef; and its descendents form one region and the heladerms

other singleton region. Now we can again apply the same argument to the region consigting of
and all its descendents and show that it can be divided into a series of singleton regions. Thus the
characterization of the spiral graphs as stated above is equivalent to the one stated in Result 6.1. This
characterization is only one way, i.e. if the given rfg has a dominator tree having the above properties,
it surely is a subgraph of some spiral graphs. Else, it may or may not be a subgraph of some spiral
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graph. More accurately, a rfg is a subgraph of some spiral graph iff it is a subgraph of some maximal
rfg having a dominator tree having the above properties. O

Result 7.5 The heightf) of the dominator tree of a spiral graph is one more than the number of
nodes added to it suing rule (2b).

Proof:

When we add the first node using rule (1), the height of the dominator tteé\iser that, every time

we add a node using rule (2a), the height of the dominator tree remains unchanged and every time we
add a node using rule (2b) the height of the dominator tree increasesTibyis, we can say that

h = 14+ number of nodes added to the spiral graph using rule (2b). O

Result 7.6 The order in which the nodes are added to a spiral graph is given by the “inorder”
traversal of its dominator tree.

Proof:
We first define the “inorder” traversal of the dominator tree of a spiral graph as follows

1. Visit the leftmost son
2. Visit the node

3. Visit the remaining children in their “natural” order

Thus, for the dominator tree in Figure 7.6, the inorder traversal of the dominator tree gives the se-
guence of nodesas 0123456 7 8. In this case, we can say that node 0 was added using rule 1, node
1 was added using rule (2b), nodes 2,3 by rule (2a), 4 by rule (2b), 5 by (2a), 6 by (2b) and finally 7
and 8 by (2a). O

7.3 Reduction of a Flow Graphs into a Spiral Graph

In the previous section, we examined the characteristics of the dominator trees of spiral graphs. In
the paper “Node Listing for reducible flow graphs” Aho and Ullman have shown that when proper
regions are replaced by single nodes, any flow graph can be reduced into a spiral graph. In this section
we examine exactly how this reduction takes place and which are the regions that are to be replaced
for such a reduction.

As seen in the previous section, in any spiral graph, all except the leftmost node in the dominator
tree are the leaf nodes. We have also seen that in any reducible flow graph, the subgraph formed by
a node and all its descendents is a region. Now, if we are given any reducible flow graph which has
a dominator tree in which these exists node(s) which is not the leftmost node and is not a leaf node,
then if we replace that node and all its descendents (which for a region) by another node, then we
will get a flow graph in which all the nodes that are not the leftmost nodes will be leaf nodes i.e. the
resulting flow graph will be a spiral graph. This is shown in Figure 7.8.

Thus, if we define a transformation of replacing the non-leftmost node and all its descendents
in the dominator tree by a single node, then repeated application of such a transformation until the
transformation cannot be applied will finally give a graph which is a spiral graph with some edges
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Figure 7.8: Reduction of a flow graph to a spiral graph

removed. Therefore, looking at the dominator tree we can easily figure out which are the regions that
are to be replaced by single nodes in order to reduce the flow graph to a spiral graph. These regions
are exactly those node and their descendents in the dominator tree which are not the leaf nodes and
are not the leftmost children in the dominator tree.

7.4 Algorithm For Computing Sequences of Regions

In the paper “Node Listings for Reducible Flow Graphs” [4], Aho and Ullman have given an algorithm

for converting a flow graph into a subgraph of a spiral graph by replacing appropriate regions by single
nodes. In the previous section, we have seen how this conversion takes place. They have also given
an algorithm for that purpose. We now give an equivalent algorithm.

First, let us see the algorithm given in [4]. Given a reducible flow gi@ph (N, £, ngy), we are
interested in finding a set of disjoint regioRs, Rs, ... , R,,, whose union includes all nodes Gf
having the following properties:

1. none ofRy, R,, ... , R,, has more thagk nodes ;
2. there is a sequence of regiafis S,, . . . , S,, such that:

(@ S = Ry,
(b) for: > 1, S; consists ofS;,_; andR; with one as the predecessor of the other,
(c) S, isG.

3. The graph formed fror’ by reducing each oRy, Rs, ... , R,, to a single node with no loops
is a spiral graph with zero or more edges removed.

As stated in [4], ifT" is any region of more thﬁk nodes, then either
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1. itis composed of two nonempty regions, one of which has mor%fhaodes, or

2. itis composed of two regions the larger of which has betv%skeand%k nodes.

The algorithm for generating the sequence of pélis, R..), (Sm-1, Rm-1),-..,(S1, R1) as
given in [4] is shown in Algorithm 7.

T =G

while 7" has more than %k nodes do
let 7" be composed of regions 77 and 715, with 77 having no fewer nodes that 75 ;
print (7,73) ;
T:=1;

end while

. print (T,7) ;

NoarwdhR

Algorithm 7: Computing the sequences of regions

We now give an equivalent algorithm. The algorithm is based on the fact that a maximal region
can be divided into two region in only one way, one region consisting of the rightmost child of the
header and its descendents and the other consisting of the remaining nodes. This algorithm expects
as input the weighted dominator tree of the flow graph. We first define a weighted dominator tree.

Definition 7.1 (Weighted Dominator Tree) = Theweighted dominator treef a flow graph is the
dominator tree of the flow graph with each node assigned a certain weight as follows:

1. The weight of a leaf node is and

2. The weight of a non leaf node is given by= w; + ws + ... +w, + 1, wherew, ws, . .. ,w,
are the weights of the children of that node.

We now give an algorithm for finding the sequences of regions that satisfy the condition stated
above (Algorithm 8). The algorithm is motivated by the one given by Aho and Ullman. It makes use
of the fact that a non-singleton maximal region can be divided into two regions in a single way, as
given in Result 6.21.

Since this algorithm is not concerned at all about the actual edges that are present in the flow
graph, the above algorithm works for all reducible flow graphs including maximal rfg’s. Furthermore,
the output of this algorithm is the same for all the flow graph having the same dominator tree even if
they have different edges.

As an example, consider the flow graph shown in figure 7.9-a, which is taken from [4]. Its
weighted dominator tree is shown in figure 7.9-b.
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1. /* h is the root of the weighted dominator tree of the given flow graph */
I* R,.q. denotes the region formed by node and all its descendents */
2. ki=wy ;
3: while w;, > 2k do
4: let k, be the rightmost child of » and w,, be its weight ;
I* So, Ry, can be divided into two regions, one with weight w,, and the other with weight
wy, — wy, ¥/

5 if w,, > w;, — w, then
6: print (Rh, Ry, — Rkn) ;
7: h:=k,;
8: else
9 print (R, R,) ;
10: Remove from the tree rooted at h k,, and its descendents ;
11: Wp, = Wp — Wy, ;
12:  endif
13: end while

14: print (R, Ry) ;

Algorithm 8: Finding the sequences of regions

(19 (10)1

(@) (b)

Figure 7.9: Reducing a flow graph into a spiral graph
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At the first stagew,, = 9 so theif condition satisfies and the pair of regidqs., 2, ... , 10}, {1})
is printed. In a similar fashion, the algorithm proceeds until all the regions have lessithates.
The calculations done by the algorithm are summarized in the following table. It can be seen that
this algorithm produces sequences of regions in the reduction, whereas the one in [4] produces
sequences of regions. This is because we have assumed the graph to be a maximal rfg, so at the first
stage the regions consists simply the nb@ad not the nodesand2.

1 1j10]2 ] 9 1] {L2...,10} | {1}

2 (2] 9(3 | 3 1]12,3,...,10} | {2}

3 (3] 8|4 ]| 7 1]1{3,4,...,10} | {3}

4 |4 719 | 2 5 {4,5,...,10} | {9, 10}

5 il 5|8 | 1 11{4,5,....8) | {45,....8)

7.4.1 Analysis of the Algorithm

As seen in chapter 4, the algorithm by Aho and Ullman enables us to find a node listing of length
at mostn + 2.01nlogn for any arbitrary reducible flow graph. If the number of edges in the flow
graph €) is bounded byn i.e. e < 2n, then they give an algorithm for finding the node listing in
time O(nlogn). This bound is required for “efficient” parsing of the given reducible flow graph to
produce a sequence of regions.

Here, we analyze the above algorithm (Algorithm 8). It can be easily seen that if the “ordered”
dominator tree of the given rfg is given, then parsing that ri@($) i.e. constant time as we already
know what the division into the regions will be, as given in Result 6.21. Thus, the only problem is
to find the “ordered” dominator tree, which also bounds the time complexity of the above algorithm.
In a general setting, we have< n?. Then, the “ordered” dominator tree can be found by using the
following steps:

Perform the depth first traversal and find the depth first numbéxs:.-
Find the acyclic ordering which is the same as the depth first ordeiing }-

Find the immediate dominators for each node(eloge) = O(n?logn) sincee = O(n?).

W Do

Find the “ordered” dominator tree@(n), if nodes are visited in the depth first order during
the construction of the dominator tree.

5. At each stage, find a parse of the given regioG¥ .

Thus, it can be seen that the time complexity of the above algorithm for finding the sequences of
regions and hence the node listinglén? log n).

g



CHAPTER

Miscellaneous Results

This chapter is a cornucopia of smaller but important results that were found during the project but
do not fit into any of the chapters.

8.1 About Spiral Graphs

Result 8.1 Are any two spiral graphs with the same number of nodes isomorphic ?

The answer is10, they are isomorphic if the nodes are added using the same sequence of rules. Can
they be isomorphic if the nodes are added using different sequence of lnkesstgate

Result 8.2 The number of different spiral graphs havingiodes aren! x 2" 1.

Proof:

Givenn nodes, the number of different orders in which these nodes can be added to the spiral graph
is n!. Of thesen nodes, the first has to be added using rule (1), and each of the next nodes can be
added using either rule (2a) or (2b), thus givitig® possibilities. Thus, the total number of spiral
graphs ofn nodes is! x 2771, O

Result 8.3 The number of edges is a spiral graph havingodes ig”=™2 — 1.

Proof:

We prove the result by induction on The result is trivially true for, = 1. Now let us assume that
the result holds for a spiral graphof- 1 nodes. Therefore, a spiral graphof 1 nodes ha@ -1
edges. Now, when the’" node is added to the spiral graph, by definitions exactylges are added
to the graph. Thus, the number of edges in the spiral graph so forrﬁ%ﬁfﬁ% —1+n= @ —1.

O

Result 8.4 1. If a spiral graph is formed only by adding the nodes using either rule 1 or rule
(2a), its dominator tree will be of heigBt with the header at levél and all the other nodes at
levell.



8.1 About Spiral Graphs 68

2. If a spiral graph is formed only by adding the nodes using either rule 1 or rule (2b), its domi-
nator tree will be skew and of height= n, wheren is the number of nodes in the graph. The
node added using rule 1, i.e. the first node will be the leaf of the dominator tree and the last
node will be the root of the dominator tree.

8.1.1 Upper Bound on the Number of Paths
Note In what follows,

1. A‘path’ means ‘a non-redundant acyclic path beginning with a back edge’

2. A ‘2b-spiral graph’ means ‘a spiral graph in which all nodes are added bybul&@he nodes
are added in the order— 1,n — 2,... ,0.

Result 8.5 In areducible flow graph af nodes, the maximum number of paths havibgck edges
is given by th entry inn. — 1th row of the Pascal’s triangle.

Example 8.1 The Pascal’s Triangle is shown in Figure 8.1.

row=1,n=2 1
row=2,n=3 11
row=3,n=4 1 2 1
row=4,n=5 1 3 3 1
row=5n=6 1 4 6 4 1
row=6,n=7 1 5101051

Figure 8.1: Pascal’'s Triangle

E.g., for any reducible flow graph gfnodes, the max. no of paths havisidpack edges g0,
since thes™ entry in(7 — 1) = 6" row of Pascal’s triangle i$0. Similarly, the maximum no of paths
having5 back edges i5.

Proof:

1. Among all reducible flow graphs of nodes, theb-spiral graph ofn nodes will have the
maximum number of back edges in any path.

2. So, itis sufficient to show that inZ-spiral graph the number of paths havingack edges is
equal to thé th entry inn — 1th row of Pascal’s triangle.

3. We prove stmt.[2] by induction.

e Statement [2] can be verified far=2t0 7
e Let us assume that stmt.[2] is true for some- m.



8.1 About Spiral Graphs 69

e We now prove that stmt[2] is true for = m + 1

Case [i] :
Forb =1 andb = n — 1, there is only one path. So, stmt[2] is proved §ct 1 andn — 1

Caselii] :

Forl<b<n-—1.

We describe a procedure to get a path back edges fozb-spiral graph of ¢ = m + 1) nodes
from 2b-spiral graph of ¢ = m) nodes. The rules of constructing the path&-back edges are:-

(1) Get the paths having— 1 back edges iRb-spiral graph of ¢ = m) nodes. Insert the node

m (i.e. n — 1) at the beginning of that path. e.g. The path 54 3 2 0 1 can be obtained from the

path 4 320 1. In this casé—= 4 andm = 5.
By using this rule, no. of paths havihdack edges created fab-spiral graph of ¢ = m + 1)
nodes= no. of paths having 'b-1’ back edgesin-spiral graph of ¢ = m) nodes.

(2) Get the path ob back edges ib-spiral graph of ¢ = m) nodes. The node: — 1 will be

at the beginning of that path. Convert this path into a new path (which begins with a forward
edge) as follows. Remove that node from the beginning and shift that node as far as possible

towards right, such that in that path the nodes upte 1 are in ascending order.
e.g. The path 4 2 30 1 will be convertedto 2340 1.
Now, at the beginning of this converted path, insert the nedee.g. At the beginning of the

converted path above, node 5 will be inserted. So, the resultant path willbe 52 34 0 1, which

has 2 back edges. Hebe= 2 andm = 5.
By using this rule, no. of paths havihdack edges created fab-spiral graph of ¢ = m + 1)
nodes = no. of paths havirigoack edges iRb-spiral graph of ¢ = m) nodes.

(3) The path having back edges can be constructed using only the above rules.

Now, the total number of paths haviadpack edges fo2b-spiral graph of ¢ = m + 1) nodes

= (the no. of such paths which can be created by rule {the no. of such paths which can be
created by rule 2)

= (the no. of paths having— 1 back edges whem(= m)) + (the no. of paths havingback
edges whenm{( = m))

= (b — 1 th entry onmth row of the Pascal’s triangle} (bth entry onmth row of Pascal’s
triangle)

= (bth entry onm + 1th row of Pascal’s triangle) ..by definition of Pascal’s triangle

Hence proved. O
Result 8.6 The number of paths in 2b-Spiral graph having: nodes is given bg™—2.

Proof:
Here, as usual, a path means a non-redundant acyclic path beginning with a back edge.

1. The number of paths inZb-Spiral graph having nodes is given by the summation of all the
entries in thex — 1th row of the Pascal’s triangle.
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2. We prove the required result by induction. The result can be verified fod to 7.

3. Let us assume the result for= m. So, the number of paths in ti2é-spiral graph havingn
nodes i2™~2. So, the summation of all the entries in the— 1th row of the Pascal’s triangle
is2m2,

4. Now,
Number of paths in (2b)-spiral graph having+ 1 nodes
= Summation of all the entries in theth row of the Pascal’'s Triangle
= 2x(Summation of all the entries in the — 1th row of the Pascal’s Triangle

=2 x 2m~2
- 2m—1

Hence Proved. ]

8.1.2 Method of Finding Subgraphs of Spiral Graphs

Before the development of the theory of maximal rfg’s and the properties of spiral graphs, we did not
have any theoretical basis for finding whether a given rfg is a subgraph of some spiral graph. This
was essential as we had proposed the following prood ferlog n for any reducible flow graph,

1. Every rfg ofn nodes is a subgraph of some spiral graph abdes.
2. The density of a (2b) spiral graphds= [logn].
3. Of all the spiral graphs of nodes, (2b) spiral graph has the highest density intuitively.

4. Thereforey < logn for any rfg.

The first point is the crux of the entire proof. Although the first point was later proved to be false,
until that, the following method of finding the subgraphs of spiral graphs was used. It works for all
the subgraphs of (2b) spiral graphs as well as some (2a)—(2b) spiral graphs. The method is as follows

1. Write down the description of the graph as give on page 123.

2. Start with any arbitrary node of the graph and strike out the entire row for this node in the
description of the graph.

3. Ifthe starting node is the successor of a single node, strike out the entire row for that node also.

4. Repeat (4) as long as possible, each time striking out a row and finding out a new node, only of
which, the current node is a successor i.e. the current striked out node appears only once in the
remaining graph description.

5. If we reach a stage in which the currently striked out node is a successor of 2 or more remaining
nodes, verify whether it is a successoratifthe remaining nodes. If not, the method fails. If
yes, order the remaining nodes such that the successors of a node are also the successors of the
previous node in the ordering.

6. If all the nodes have been exhausted, the graph is a subgraph of a spiral graph with nodes
processed by rule (4) added by rule (2b) and those processed by rule (6) added by rule (2a).
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7. If the method fails, try again starting with a different start node. If the method fails for all pos-
sible choices of starting nodes, then the graph may or may not be a subgraph of a spiral graph.
A more reliable and always correct method is based on the dominator tree characterization and
is implemented as the prograsspiral.

As an example of this method, consider the graph in figure 8.2. Let us start applying the rules

7\

Figure 8.2: Example of the method

beginning with node 3. Initially the graph description is,

4
3

A WNEFLO
OPr OO0OFPr
A BADNDN

Now, after striking out the row for node 3, we strike out the row for node 1 as 3 appears only
once in the row for node 1, then we strike out the row for node 0 as 1 appears only once in the row
for 0. This brings us to the following stage,

At this stage, the current node 0 is the successor of 2 nodes viz. nodes 2 and 4. As it is the
successor of all the remaining nodes, we order the remaining nodstasThus, the given graph is
a subgraph of a spiral graph with nodes added in the order: 3—(1), 1—(2b), 0—(2b), 2—(2a) and finally
4-2(a). This can also be seen easily from the dominator tree of the graph.

8.2 Generalization of Lemma 2 in Aho and Ullman

We now generalize the lemma 2 given in the paper “Node Listings for Reducible Flow Graphs” by
Aho and Ullman [4]. The lemma 2 states
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Lemma 2 Let P = ny,ns,...,n; be an acyclic path in a reducible flow graph and tef_; —
Miyys Mis—1 — Miy, - -+, Mi,—1 — N, b€ the sequence of back edges aléh@ that order. Them;,
dominatesy;, , forall j,1 < j <k.

The above lemma states that the head of a back edge in an acyclic path dominates the heads of
all the previous back edges along that path. We now propose a more generalized lemma as follows.

Result 8.7 The head of a back edge in an acyclic path in a reducible flow graph dominates all the
nodes before it in that path. In other words Af= (ng, n1, ..., n;) is an acyclic path in a reducible
flow graph andr; — n,44 is a back edge i, thenn;,; dominates:; V1 < j < k.

Proof:

Let P be an acyclic path in a reducible flow graph andfeinclude the back edge — d. Then
we have to prove that dominates all the previous nodes aloRg Sincec — d is a back edged
dominates: by definition of a back edge.

Now consider a nodé other thanc that occurs beford in P. Clearly, it occurs before c too.
Let A be the portion ofP from b to c.(Figure 8.3) Let us assume that neithet nor d is the initial

Figure 8.3: An acyclic path in a reducible flow graph

node () of the flow graph for simplicity. Now let us assume tliatloes not dominaté i.e. there
exists a path from the initial node, to b that does not includé. Let this path beX. Now consider
the pathXbAc. Clearly, X does not include/, nor doesA andb,c are not equal td or elseP will
not be acyclic. Thus{bAc is a path from the initial node, to c that does not includ€. This is a
contradiction to the fact thatdominates:. So our original assumption théidoes not dominatéis
wrong. Saod does dominaté. In fact, along the pattXbAc, d cannot be inA andd is notb andc. So
d must be inX. Since X is any arbitrary path from, to b, it follows thatd is in every path fromn,
to b. This implies thatl dominate$.

Since in the proof, nodé was arbitrarily selected, we can conclude tiatominates all the
nodes that occur before it along pdth In the proof, we have assumed that neithe,oindd is ny.
Let us sort out these cases:

1. b = ng In this case, the path is as shown in Figure 8.4

Figure 8.4: Caseb = ny

In this case the portion of the path fratg to ¢ forms a path from the initial node tothat does
not included. This contradicts the fact thdtdominates:. So, b cannot be, in this situation.
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In other words, any acyclic path that begins at the initial node cannot have a back edge. Or, in
any acyclic path that contains the initial noag the portion of the path after the occurrence of
ng cannot have a back edge.

2. d = ng In this case, the path is as shown in the Figure 8.5

Figure 8.5: Cased = n,

In this case, the initial node, dominates: as well a since the initial node dominates all the
nodes of a flow graph. Thus the cake- n, is consistent with the given generalization.

3. ¢ = ng In this case, the path is as shown in the Figure 8.6

Figure 8.6: Casec = n,

In this casen, domd andd domn,. In this case, consider the dominator tree of the flow graph.
In this dominator treej is an ancestor ai, (sincen, domd) andn, is an ancestor aof (since
d dommny). Clearly, this is possible only i = ng. In that case, we have the path as shown in
the Figure 8.7 which is cyclic and contradicts the original assumption®thstacyclic. So we

Figure 8.7: Casec = ny

conclude that the case= n, is not possible. In other words, the initial nodgcannot be the
tail of a back edge.

O

Thus, we can see that in an acyclic path, the head of a back edge dominates all the previous
nodes in the path. This is a more generalized result than that due to Aho and Ullman. It can now
be easily observed that if, along an acyclic path in a reducible flow graph, we traverse the back edge
n — d, thend must be a common dominator of all the nodes that predede¢hat path.

8.3 Some More Results

Result 8.8 In a minimal node listing for any reducible flow graph, now two adjacent nodes are
identical.
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Proof:
Obvious. ]

Result 8.9 If areducible flow graphR) has a subgraphR’) of densityd z/, then the density aR is
5R Z 6R"

Proof:
Obvious. ]

Result 8.10 Removal of any back edge from a spiral graptbafodes decreases its density by
from3to 2.

Observation There is a relationship between the matrix of levels as produced by the program
matrix and the “heuristic” node listing produced by the progrsineuristics . In particular,

the matrix of levels is contained in the “heuristic” node listing. Also, for a spiral graph in which all
the nodes are added using rule (2b), the node listing and the heuristics are the same.

Observation During the discussion with Prof. Diwan of IIT, Powai, he had suggested to “blow”
any reducible flow graph into a spiral graph by the addition of nodes in such a way that all the paths in
the original flow graph are covered in the resulting spiral graph. However, it seems that an arbitrary
reducible flow graph cannot always be blown into a spiral graph. The intuitive reason behind this
statement is as follows:

e Consider a flow graph that is not a subgraph of any spiral graph having the same number of
nodes. Its dominator tree has at least one non-leaf non-leftmost node.

e Now, if we add any number of nodes to the graph, it is not going to convert the non-leftmost
non-leaf node into a leaf node. Thus, the resulting flow graph will not have a dominator tree
that satisfies the characteristics of the dominator trees of spiral graphs.

Result 8.11 For the maximal reducible flow graph with the dominator tree as shown in figure 8.8,
the density is always 1.

Proof:
Consider the maximal rfg with the dominator tree as shown in figure 8.8.

()

Figure 8.8: A maximal rfg with depth 2
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This maximal rfg is similar to a spiral graph with 3 nodes, all added using rule (2b). What we
have done is “spilt” the nod2into a number of children of nodein the dominator tree, denoted as
21,29,...,2,. It can be now seen that, 2,,...,2,,0,1,21,2,...,2,,0is a node listing for this
maximal rfg. As each node appears at most twice, this type of maximal rfg has a density 1.[]

gon



CHAPTER

Minimal Reducible Flow Graphs

In this chapter, we define various “transformations”’and observe their effect on the densities of the
graphs. We see that some of these transformations do not affect the density whereas some of them
may either increase or decrease the density depending upon whether a node was added or removed
from the graph during the transformation. In each case, we first define the transformation and then
state its effect on the density. Based on the observations, we then formulate the conaeptiofa

reducible flow graph

9.1 Transformations and Their Effect on Density

9.1.1 T Transformations

Definition 9.1 ( 77 Transformation) We define &7 transformation as the removal of zero or more
self loop of the forrm — n from the graph.

Since self loops do not contribute towards the formation of acyclic paths in the flow graphs, we
can easily say that’s, transformation does not affect the density of a graph. In other wordsisia
graph with density and we obtain a new graghl from G by applying a7} transformation, then the
densityd’ of the new graph will bé’ = §.

9.1.2 Inverse T Transformation

Definition 9.2 (Inverse T3 Transformation) We define an inversé; transformation as the addi-
tion of zero or more self loops of the form— n to the graph.

Again, since self loops do not contribute towards acyclic paths in the flow graph, irferse
transformation does not affect the density of the graph.
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9.1.3 75 Transformation

Definition 9.3 ( 7, Transformation) If there is a node:, not the initial node, that has a unique
predecessor, then al;, transformation is defined as the deletiomaind making all the successors
of n (includingm, possibly) the successorsof

We can now intuitively say that’d, transformation may result in a decrease in the density of the
graph, but it will never result in an increase in the density of the graph.

We now extend the concept of7a transformation by classifying & transformation into two
classes. If &5 transformation is applied so that the nodeconsumes node, then theT;, transfor-
mation is classified as

e Type 1, if the nodem is notreachable fromn in the original graph.

e Type 2, if the nodem is reachable from in the original graph.

Observation In a maximal reducible flow graph, every node is reachable from every other node.
Hence, dl;, transformation Type tannotbe applied to a maximal reducible flow graph.

9.1.4 Inverse T; Transformation Type 1

Definition 9.4 (Inverse T, Type 1 Transformation) We define an inverseg, transformation type
1 as the addition of a node sayo a graph and the addition of the following edges to the graph

1. The edgen — k, wherem is some node in the original graph.

2. For all the edges of the formm — n in the original graph, add the edge— n in the new
graph, only if the addition of the edge does not makesachable front.

Thus, it can be seen that an invefisgransformation type 1 is the expansion of a nedé the
original graph by adding a node makingm as the only predecessor bfand replicatingsomethe
edges “going out” fromm on the new nodé. The inversél; transformation type 1 is illustrated in
Figure 9.1

We can now say that an inver§g transformation type 1 does not increase the density of the
graph. LetG be the original graph with density and L as the minimal node listing. Le%’ be
obtained fromG by adding a nodé as the successor af using an inversé’, transformation type
1. Then the node listind.’ of the new graphG’ can be obtained froni by replacing inL every
occurrence ofn by m, k. This is because any acyclic path that begins wittoes not contaim as
m is not reachable fromk. Thus no node i1/ is repeated more thantimes, so that the density of
the new graplty’ is alsod.

Thus, we can also argue thaf‘atype 1 transformation also does not decrease the density of the
graph.

We can also view th&, type 1 transformations as follows. If the graph haseiculation point
that divides the flow graph into two parts, then the density of the graph is the maximum of the density
of the two parts. This is illustrated in Figure 9.2.
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Figure 9.1: InverseT; Transformation Type 1

9.1.5 Inverse T; Transformation Type 2

Definition 9.5 (Inverse 75 Type 2 Transformation) We define an inversg, transformation type
2 as the addition of a node sayo a graph and the addition of the following edges to the graph

1. The edgen — k, wherem is some node in the original graph.
2. For all the edges of the form — n in the original graph, add the edge— n.

3. The edg& — m.

An inverseT; transformation type 2 is illustrated in Figure 9.3.

We can now say that an inversg transformation type 2 may result in an increase in the density
of the graph. IfG is a graph with density and we apply an inversé, transformation type 2 by
adding a nodé as the successor of, then the node listing’ of the new graph can be obtained from
L by replacing the first occurrence of in L by k, m, k and all the other occurrencesafin L by
m, k. This the density’ of the new graph can be at most- 1 i.e. ¢’ < + 1.

Thus, we can also argue thaf atype 2 transformation may or may not decrease the density of
the graph.

9.1.6 Significance of These Transformations

We know that any reducible flow graph can be reduced to a single node by repeated application of
andT; transformations. Thus, inversely, we can say that any reducible flow graph can be constructed
from a single node by repeated application of invérsand inversd’, type 1 and 2 transformations.

Of these invers@) and inversd; type 1 transformations do not affect the density of the graph. Only

an inverserl;, type 2 transformation may result in an increase in the density of the graph by 1. Now,
a single node has a trivial density= 0. Thus, the density of a graph is limited by the number of
inverseT, type 2 transformations required to construct it from a single node. In other words,
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[ No Such Path

~

Figure 9.2: An articulation point in a flow grapht = maz (61, d)

0 < Np,

where Ny, is the number of inversg;, type 2 transformations required to construct the graph
from a single node.

9.2 Minimal Reducible Flow Graphs

Definition 9.6 (Minimal Reducible Flow Graph) A minimal reducible flow graptof » nodes
and density) is a reducible flow graph of nodes and densitysuch that

1. The removal of any edge from the graph will either render it disconnected or will reduce its
density.

2. It cannot be obtained from any minimal reducible flow graph of denstyd less tham nodes
by repeated application of any of these transformatibns

(a) T; transformation
(b) inverseT; transformation
(c) inversels, transformation type 1

A minimal reducible flow graph of nodes and densitywill be denoted asnin, s).

In essence, minimal reducible flow graphs of denéitepict the “essential” graph structure(s)
required to have density.

0o

IRight Now, we are unaware of any other transformations that will not change the density of a flow graph. As more
of such transformations are discovered, they must be added to this list.



9.2 Minimal Reducible Flow Graphs

80

Figure 9.3: Inversel; Transformation Type 2




CHAPTER

Conclusion and Future Work

10.1 Conclusion

As a part of this research project, we were able to derive many interesting results regerdeng
listings and their applications to data flow analysi3ensityis a new upper bound on the length of

the node listings proposed by our guide Dr. Khedker. We worked on this concept and were able to
prove thaty < logn for some specific but sufficiently general reducible flow graphs. We also have
an “intuitive” proof for 9 < logn for all reducible flow graphs. During this work, we have also
formulated a new concept aiaximal reducible flow graphend derived some interesting properties.
Since any reducible flow graph is a subgraph of some maximal rfg, maximal rfg’'s can be used to
derive or prove upper or lower bounds on properties of reducible flow graphs.

For the experimentation and verification of the theoretical results, we have also developed a
library of tools for working with flow graphs and node listings. This library was developed under
Linux using Lex and Yacc. For user friendliness, we have also developed a GUI frontend using both
GTK+/GNOME and Qt libraries. Apart from this, we have also implemented parallel brute force
programs using PVM and MPI on the PARAM 10000 Supercomputer at CDAC, Pune.

10.2 Future Work

Research is a continuous activity. Although we have contributed a handful of results to the ongoing
research on density by our guibe Khedker there is still much scope for further work. A theoretical
proof for§ < logn for all reducible flow graphs is still to be derived. For effective use of the node
listing based global data flow analysis method in compilers, an efficient algorithm to find minimal
node listing is required. Although the concept of maximal rfg is theoretically well developed, its
practical applications are yet to be discovered.

One possible way to prové < logn would be to prove it for all maximal rfg as density of
maximal rfgs is an upper bound on the density of the contained reducible flow graphs.
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CHAPTER

Organization of The Programs

In this chapter, we describe the general organization of the programs and tools developed as a part
of this project. A research project like this one involves a high technical risk with the exact require-
ments of the software not known before hand. The lack of this knowledge of the exact requirements
of the software reduces the scope of the application of the principles of software engineering such
as requirement analysis, design etc. Most of the software development was “demand driven,” a new
idea was thought or the need of verifying some results arose, and then the programs were devel-
oped. However, we have tried to maintain the compatibility of all the programs, so for example, a
program expecting as input a graph can have its input redirected to the output of the program that
produces a graph. Extensive application of the doctrines of software engineering was done during the
development of the GUI front end as described in chapter 14.

File Formats
Following the standard UNIX conventions, we decided to keep all the data generated by the program
in text files as opposed to binary files. This has the following advantages:

e The input/output files can be easily viewed using a standard text editor. Thus, small changes
can be made readily and no separate programs are required to render the data in a human
understandable form.

e Manipulation of the text files is often required during the experimentations. In case the data is
kept as a text file, UNIX offers text manipulation tools likevk programming language. Thus,
the mapping from one format to another can be handled by writing #&programs rather
that coding that in C. This saves time and increases reliability due to the use of existing tools.

Data Input and Output

Each of the programs developed expects its input to be in a certain format. The input was read and
parsed using the standard totdg andyacc Each input file can have a comment that begins with

a number sign (#) and continues till the end of the line. The programs were designed so that each
program reads input from the standard input and writes the results to the standard output. This enables
establishing a pipeline of commands using the pipe opefatdowever, in some programs, input is



Organization of The Programs 85

taken through files that are to be specified at the command line. All errors are written to standard
error.

Source Compilation

Each of our programs is generally a multifile C program involving lex and yacc specification files,
common header files and program specific files. For efficient compilation, each program has an
associated makefile in its directory. The make file makes the compilation of the programs efficient,
since we don’t have to retype the commands and only those parts that are required to be recompiled
are recompiled. In each directory, simply typing “make” invokes a program that reads the makefile
and issues appropriate commands if some files are out of date.

Source Code Maintainance

In order to maintain the previous versions of the source files, the Revision Control System (RCS) is
used. RCS allows us to store all the previous versions of the source file efficiently, since it does not
replicate the entire file but only stores the changes. Also, it allows us to retrieve any of the earlier
versions of the files and also automatically numbers each version for easy reference. To modify a
certain source file say “parse,’we first need to “check out” that file from the RCS system and lock it.
This can be done using the following commands:

$ co -l parse

Now the file “parse” can be modified. Once the changes are made, the file must be ‘checked in”
the RCS system. This can be done using the command:

$ ci parse

This command adds the modified file to the RCS system and deleted the file “parse.” All the
previous and this new version of the file will reside in a file “parse,v” in the same directory.

To simply view the latest version of the file without modifying it, use the command:
$ co parse

Apart from these basic RCS commands, there are many other command in the RCS system. One
of the benefits of the RCS system is that the “make” utility for building the programs knows about
RCS. Thus, if it expects to see a file “parse” and does not find one, then it will automatically extract
the latest version of the file “parse” from “parse,v” and use it. After the compiling has been done, all
these extracted files and other intermediate files are deleted by the command:

$ make clean

Help and Documentation

All the programs are organized in a directory structure with a separate directory for each program.
Each directory has an optional file “algorithm” that explains in brief the algorithm for that program.
The program source code itself is also sufficiently documented. Apart from that, online documenta-
tion is available in the format of thdNIX Manual PagesThe manual pages for all the programs are
written using thegroff text formatting language and are available in thenpagedglirectory. They

can be accesses by the command like:

$ man ./sheuristic.l . man page for sheuristic

HRERN
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CHAPTER 1 2

Brute Force Implementation on PARAM
10000 Supercomputer

The most straightforward method of finding the densities is to generate a list of all the acyclic paths
in the graph and then try to “fit” them together manually. However, this method does not always
give the minimum density. To find the exact densities, we need to check all possible node listings i.e.
we should go by the brute force method. For this purpose, we have implemented parallel programs
that find density by an exhaustive search of the solution space. These programs were implemented
using both theParallel Virtual Machineand theMessage Passing Interfac&hey were executed on

the PARAM 10000 SupercomputairtheNational PARAM Supercomputing Faciliby the Center for
Development of Advanced Computing

12.1 Sequential Brute Force Algorithm

The basic method of finding the node listings by the brute force method is to first find some known
density by the heuristic methods and then to try out all the possible combinations of the node listings
of that length. Thus, if we have a known densitgf the graph then, we consider all the permutations

of an array of lengtll x n. For each permutation, we find the density and then calculate the minimum.
Thus, the basic program is given in Algorithm 9

In this algorithm, there aré = d x n nested for loops, one for each position in the array of
the nodes. Since in a minimal node listing, two consecutive nodes will never be the same, all such
permutations are eliminated by tHestatements following thfor statements. It is clear that, because
of too many nested for loops, this program will take a long time if run on a sequential machine. Also,
the nested loops are essentially independent. This independence motivates us to run the program on
a parallel machine so as to speed up the execution. So, we decided to run this program using PVM
on PARAM 10000 Supercomputer.
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[* k is the length of the array for node listing */

[* i.e. k = d * N, N being the number of nodes */

[* The nodes in the graph are numbered as O, 1, ..., N -1 *
int L[K];

for(L[0] = O; L[0] < N; L[0]++)
for(L[1] = O; L[1] < N; L[1]++)
if(L[1] '= L[O])
for(L[2] = O; L[2] < N; L[2]++)

-for(L[k-l] = 0; L[k-1] < N; L[k-1]++)
if(L[k-1] '= L[k-2])

{
check whether L has a node listing.
if( yes )
{
find its density in ‘this _density’.
if(this  _density < current _density)
{
current _density = this _density;
current _nl = this node listing;
}

} ¥ end if( yes ) */
} I* end of the body of the for loops */

Algorithm 9: Sequential brute force algorithm

12.2 Implementation with Parallel Virtual Machine

PVM (Parallel Virtual Machine) is a software environment for heterogeneous computing (i.e. the
underlying processors on which the processes execute may not be identical). It allows a user to create
and access a parallel computing system made from a collection of distributed processors, and treat
the resulting system as a single virtual machine (hence the name, parallel virtual machine).

The hardware in a user’s virtual machine may be single processor workstations, vector machines
or parallel supercomputers or any combination of those. The individual elements may all be of a
single type (homogeneous) or all different (heterogeneous) or any mixture, as long as all machines
used are connected through one or more networks. These networks may be as small as a LAN
connecting machines in the same room, as large as the Internet connecting machines across the world
or any combination. This ability to bring together diverse resources under a central control allows
the PVM user to divide a problem into subtasks and assign each one to be executed on the processor
architecture that is best suited for that subtask.

PVM is based on the message-passing model of parallel programming. Messages are passed
between tasks over the connecting networks. User’s tasks are able to initiate and terminate other
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tasks, send and receive data, and synchronize with one another using a library of message passing
routines. Tasks are dynamic (i.e. can be started or killed during the execution of a program), even
the configuration of the virtual machine (i.e. the actual machine that are part of your PVM) can be
dynamically configured.

In order to parallelize the program, we decided to use the master—slave paradigm. odtofithe
for loops, the master will process some outer for loops and the remaining for loops will be processed
by the slaves. Thus, in effect, the master will calculate prefixes of the permutations and send them to
the slaves. The slaves will then find out permutations having that prefix and find densities for them.
This is shown in figure 12.1.

Array with d x n elements

Prefix (Sent by the Master) Remaining combinations(Checked by the Slave)

Figure 12.1: Parallelization of the brute force program

If n is the number of nodes andis the length of the prefix that the master will send to each
slave, then the number of different prefixes possible is given by the formula:

Number of prefixes = x (n — 1)

In the PVM program, we assign a seperate slave corresponding to each prefix, and so the number
of slaves will be the same as the number of prefixes.

The different files which are used in the implementation are:

1. common.h This file contains declarations of some constants that are to be set according to the
graph. These constants are:

¢ noOfNodesToSendReceive — It specifies the length of the prefix of the nodelisting to be
sent from the master to slave
e noOfNodes — It specifies the number of nodes in the graph

¢ fileName — It specifies the name of the file to which the output of the program and the
timing information is to be stored

e maxDensity — It specifies the expected maximum density of the graph
2. constants.h This file specifies the maximum allowed values of some parameters.

¢ MAX _NODES — Maximum number of nodes allowed in the flow graph
e MAX _PATHS — Maximum number of paths allowed in the file
e MAX NO_OF_TASKS — Maximum number of tasks which can be spawned
3. gen_density.c This file generates a file density.c, which contains a user defined function den-

sity(), which calculates the density of a node listing. The file “density.c” is “# include”ed in
worker.c

4. gen_nodestosend.c It generates a file nodestosend.c, which has the function nodestosend().
This function determines what sequence of prefix nodes should be sent to each child task. The
file “nodestosend.c” is “# include”ed in master.y
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5. master.y Calculates the density of the graph whose non-redundant acyclic paths are stored in
temp.paths.

6. worker.c It receives the number of paths and the actual paths from the master. It also receives
the prefix of the nodelisting from the master. It then constructs all possible node listings having
that prefix and finds their density. Returns the minimum density found to the master.

12.3 Implementation with Message Passing Interface

After the implementation of the brute force program using a Parallel Virtual Machine, it was decided

to re-implement the program using the Message Passing Interface library as more speed was required.
The MPI Library has much less overhead than the PVM like the absence of a daemon for messag-
ing, use of shared memory for exchanging the messages between processes on the same nodes etc.
Secondly, the implementation of the MPI library has been further optimized specially for PARAM at
CDAC by removing extra layers. Even with MPI, for large graphs, the program may take a long time

to run. For such large experiments, it is necessary to have the following features.

1. The program must periodically save its state in some data file so that in case of reboots, it can
begin from the point it left, so that the computations are not lost.

2. For compute intensive algorithms like ours, it would inefficient to spawn as many processes as
required. The number of processes must be limited and the work distributed among them.

3. Do as much processing as possible statically, i.e. before the program runs.

In the MPI implementation, we have provided all these features and also have applied some
optimizations that may decrease the amount of work to be done by as large as 99.75% This imple-
mentation was done by Rahul U. Joshi.

A parallel program consists of a number of processes running on different processors (or nodes)
and working simultaneously to solve a problem. For synchronization between these processes, they
need to communicate with each other. Thisssage — passingaradigm of parallel computing is
the most widely used parallel programming paradigm. The Message Passing Interface (MPI) is an
application programming interface (API) that defines a standard interface with which message pass-
ing programs can be written and run on a variety of distributed systems. In this application, we use
the master — slaveparadigm, with the master distributing the work among the slaves and collect-
ing results from them. Also, since there are two different programs, the program is essentially a
multiple instruction multiple data (MIMD3tyle of program, so that we need to use an MPI Applica-
tion Schema. Information about some representative MPI functions used in the program in given in
Appendix C. More information about MPI can be found in [25].

The MPI implementation for finding exact densities is actually a program generator that will
generate the programs to find the node listings and the densities by brute force method using the
Message Passing Interface. The program generator needs to be supplied with some parameters by
setting the values of some constants in theddastants.h. The parameters are as follows:

1. The maximum number of acyclic paths in the grajgthAK_PATHS).
2. The number of nodes in the grapl{M_NODES).
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2 o

10.
11.
12.
13.
14.

The known density of the grapPENSITY).

The length of the prefix of the permutation that will be sent to the SRREEFIX_LEN).
The number of slavedNUM _SLAVES).

The name of the data file in which the intermediate results will be s&&dE_FILE).

The name of the source file containing the paths in textual fe4hKl_SOURCE).

. The name of the data file in which the paths will be saWdI H_DATA).
. The time for which the update thread of the slave will sIe¢pDATE_SLEEP).

The time for which the save thread of the master will SISHME_SLEEP).

The number of nodes of the prefix to be examined for validy TIMIZATION_FACTOR).
Flag for whether to favor time or speed when generating the initial reS@t&JR_TIME).
Flag to enable/disable debugging messayesqEBUG).

Whethemutexeyare to be used for synchronization among the threads otU®E (MUTEX).

Once you know these constants, changettiefine statements in theonstants.h file and then

run the shell scripgen.sh. This shell script will run the needed program generators and will generate
the executable files for the mastengster) and the slaveglave). It will then ask for the directory
in which to save the generated executables and other files. In that directory, it will save the following

files

=

© © N o 0 M w DdD

mas

constants.h — So that you know what the settings were for the programs in the directory.
master, slave — The master and the slave executables.

init_results — Program to generate the initial permutations and save them in the data file.
data_anal — Program to read the saved data and display it.

density.schema — The MPI application schema description file.

show_paths — Program to display the paths in the paths data file.

gen_paths — Program to read the path source and generate path data file.

numpaths.h, prefixes.h — header files for these parameters

path source, path data and the results data files.

To run the MPI Program, just typapirun density.schema in the corresponding directory. The
ter will continuously save the status of each slave in the data file. So, in case the program is

interrupted, it can begin at the point it was left in the next run, so that the intermediate results are not

lost.
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12.3.1 Logic and Algorithm for MPI Implementation

We have seen that, in general we have more prefixes and less slaves, so we have to distribute the prefix
to the slaves dynamically and a slave may have to process more than one prefix. Secondly, the other
consideration is that the program may run for a long time and in case the system reboots, we will
lose our intermediate results and it is not feasible to restart the calculations again. For that purpose,
the slaves must periodically convey to the masters the stage of calculation that they have reached and
the master must also periodically save this data in some file so that in case of a reboot/crash, the
calculations can begin from the point that was last saved, so that not much of the computations are
lost.

Here is a description of how the MPI program operates.

1. First, whenever the master starts, we don’t want to have the overhead of reading and parsing
the text file containing the paths. So we have a separate program for that purpose. It reads
the text file (path source file) containing textual description of the acyclic paths in the graph
and saves that description into a raw or binary format in the path data file. It also creates a
header filenumpaths.h that define the actual number of paths in the graph. Thus, now the
master, at each startup, need simply read the raw path data into an array and need not parse
the input. Secondly, since the number of paths are now known, we need allocate only that
much memory and the master need not convey the slaves the number of paths. This makes the
program memory efficient.

2. We want that in case of reboot/crash, the program must start from the point it was before the
last save. Secondly, the prefixes to be sent to the slaves need to be generated only once, not
each time the master starts. For that purpose, the process of generating the initial prefixes has
been separated out into another progmaitresults. This program generated the prefixes to be
sent and saves the results into the data file for results. Thus, the master need only read this file
into an array and need not calculate the prefixes each time it startsnitnesults program
initializes the nodes other that the prefix nodes to 0. When the master runs, it continuously
updates these other nodes to whatever permutation the slave last reported. The program is
designed such that the next time it runs, it will start from this permutation.

3. Since these results are stored in a binary form, a data analgtzeianal is provided that can
display the saved results file in human readable format.

4. The master and the slave program operate as follows.

(a) First, the master reads all the paths in the graph and broadcasts them to all the slaves.

(b) Then, the master send the slaves the permutations to operate on. While sending the per-
mutations, the master may come across a situation that all the slaves have been assigned
some permutation to work on and no slave is available to process the next permutation.
In that case, it waits for one of the slaves to finish its work and then send it the next
permutation. This continues until all the permutations are assigned to some slaves.

(c) In between, the master may receive update messages from the slaves. It updates the cor-
responding data in its array. These update messages are sent periodically by an “update”
thread in the slave and also when the slave find a node listing of a density lower than what
it has found till that time
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(d) Finally, when all the permutations are assigned, the master waits for all the slaves to finish
and send their results. It then calculates the density and displays it. Also, it saves the result
data so that you can later look at it.

(e) A thread in the slave, the “update” thread, continuously send update messages to the
master about the status of the current computations.

() A thread in the master, the “save” thread, continuously saved the intermediate results of
the computations in the save data file so that they are not lost.

The algorithms for the master and the slave are given in the following.
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=

. Read the paths data from the paths data file and broadcast it to all the slaves using
MPI_Bcast().

N

. Initialize the state of each slaves (slave]i]) as IDLE.

w

. Read the initial permutations from the results data file.

B

while There is an unprocessed and unassigned prefix p do
Find an IDLE slave;
if IDLE slave available then
Send p to the IDLE slave with tag TAG_RESULT using MPI_Send();
Mark the slave as WORKING and the prefix as assigned,;
else
Probe for any messages from slaves using MPI_Probe();
if a TAG_UPDATE message is received, update the result;
if TAG_DONE message received then
Receive the result using MPI_Recv() and mark it as final;
Send that slave the prefix p with a TAG_RESULT message;
Mark prefix p as assigned,;
end if
end if
end while

5. /* At this stage, all prefixes are distributed among the slaves */
still_working = the number of working slaves;
while still_working 0 do
Probe for a message from any of the slaves;
if TAG_UPDATE message is received, update the result;
if TAG_DONE message is received then
Receive the result and mark it as final;
Send a TAG_END message to that slave;
Mark the slave as KILLED and reduce still_working by 1;
end if
end while

6. Save the final results in the data file. Find the density from the results received from
the slaves and display it.

Algorithm 10: Master Program for MPI Implementation
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1. Receive the paths and the initial permutation from the master;

2.

while true do
Probe for any message from the master;
if TAG_RESULT is received then
Find the density and send a TAG_DONE message to master;
While finding the density, whenever a new low is attained, send a TAG_UPDATE
message to the master;
else
/* TAG_DONE message was received */
Clean up the update thread ;
exit;
end if
end while

Algorithm 11: Slave program for MPI Implementation
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12.4 Some Optimization Heuristics

12.4.1 Skipping Redundant Permutations

This is a dynamic optimization in the sense that its efficacy depends upon the actual runtime con-
ditions and cannot be predetermined easily. The basic idea behind this optimization is as follows.

Let Lo, Lq,...,L;_; be some permutation that the program checks. Let us assume that the pro-
gram finds a node listing in this permutation.if is the length of the node listing found, then let
Li,Li,,...,L;, bethe node listing found. Now if, < k — 1, then for all possible combinations

of L; +1,L;, +o....Lg_1, the same node listing will be found by the program and hence checking all
these permutations is redundant. So, checking these permutations must be avoided. For this purpose,
after the node listing has been found, we must find the first node from right that was in the node
listing i.e findi,, and then for allL;,i > i,,, setL; = N — 1 so that the loops fof;,: > ,, will be

skipped. Thus, the modified part of the program for this optimization is as in Algorithm 12.

check whether L has a node listing.

if( yes )
{
find its density in ‘this _density’.
if(this _density < current _density)
{
current _density = this _density;
current _nl = this node listing;
}

[* find the last node in the node listing */
fori = k - 1; 1 >= 0; i++)

{ if L[i] was in node listing, break; }
i++:
for(; i < k; i++)

L[] = N - 1;

} I+ end if( yes ) */

Algorithm 12: Skipping Redundant Permutations

This optimization is useful when we have overestimatedehgthof the node listing. It is also
useful when we have overestimated the density. It can be easily seen that if we skip tinetkest of
the permutation, we have skipped — 1)’ permutations. Thus, more the amount of time the program
spends in théor loop for finding the last node, more will be the optimization.

12.4.2 Reducing the number of prefixes

This optimization heuristic is based on the basic principle of tailoring the program according to the
actual paths to be checked. It can be seen that we can reduce the execution time of the program if we
can eliminate some of the prefixes, declaring that these prefixes need not be considered. We first find
those nodes that are the first nodes in some path being considered. For example, in the path,
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02341 3 1;

the node 0 is considered in the “initial” traversal, so the first node is node 2. Once we find the
set of the first nodes in the paths, we say that a pgefsxa “valid prefix” if it has at least one node
which is a first node. Otherwise, we say that the prefix is “invalid prefix.” Now, we say that when
finding the density by the brute force method, we need not consider the invalid prefixes. The reason
is as follows.

Let p be the length of prefix ank be the length of the remaining permutation being considered.
Then the permutation will contain nodes of the prefix followed by the remaining nodes. Now
sincep does not have any of the first nodes, when mapping all the path, no nodepfrathbe
mapped. Thus, the node listing, if any, being generated from this permutation will be contained in the
k remaining nodes. Clearly, this node listing will also be generated by some other prefix which is a
valid prefix. For example, if the generated node listing begins with node 0, then the same node listing
will also be generated by all the valid prefixes having a 0 in them. Thus, any node listing generated
by an invalid prefix is also generated by some valid prefix. Thus, one may discount all the invalid
prefixes. This heuristic cannot be applied to spiral graphs.gkdbad.2, this heuristic reduces the
number of prefixes from 12696 to 6540.

The above heuristic logic can be extended even further. What we are really doing in the above
logic is that we are ensuring that in any valid prefix, at least one of the nodes will be mapped when
tracing the paths. Now, suppose that the first node in the prefix to match some node is node 1. Thus
the Oth node does not contribute to the node listing, creating a “gap.” Thus, we could have done
without checking this prefix. Thus, in some way we need to avoid the gaps in the node listings. If the
logic for avoiding the gaps is incorporated in the slaves, then they may cause too much overhead and
slow down the entire process. Hence, we will incorporate this logic into the prefix generation only
(as it will be done only once). The basic theme of this heuristic is to avoid a “gap” in the prefix itself.
Thus, when a prefix of length is generated, we trace all the path into the prefix and see whether
all the nodes in the prefix are being traced. If yes, the prefix is valid, else it is not valid. The exact
algorithm is given in Algorithm 13.

1. For each path, initialize a pointer ptr(p) that points to the first node in that path.

2. for each node n in the prefix do
valid = false;
for each path p in the graph do
if ptr(p) # end of path and ptr(p) — node == n then

valid = true;
ptr(p) = next node of the path p;
end if
end for

if valid == false then
prefix is invalid, discard it;
end if
end for

3. If no invalid node n is found, then the prefix is valid.

Algorithm 13: Heuristics for reducing the number of prefixes
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In this algorithm, each node of the prefix is checked for validity. Depending on the amount of
optimization desired, one many choose to check lesser nodes for validity when deciding the validity of
the prefix. We have implemented these heuristics and the user may choose the amount of optimization
by setting the consta@PTIMIZATION_FACTOR (o) in file constants.h. This factor must not be
greater tharPREFIX_LEN(p). The heuristic will check only the first nodes out of the prefix of

lengthp when checking the validity of the prefix.

The following table gives some data about the efficacy of this heuristic.

Number of| Prefix Optimization | Prefixes before Prefixes after opt Reduction
Nodes Length | Factor optimization timization %

3 2 2 12 4 66.66

6 5 5 3750 516 86.24

24 3 3 12696 125 99

24 4 4 292008 625 99.79

24 5 5 6716814 3128 99.95

From the table, it can be easily seen that this optimization given a large reduction in the compu-
tational effort required. Also, it can been seen that as the number of nodes and the length of the prefix
is increased, the reduction in the number of prefixes increases, so the “larger” the problem, more is
the optimization. Thus, the heuristic “scales up” as the problem becomes larger, which is a desirable

property.

These heuristics were incorporated into the MPI program. For a comparative study of MPI vs.
PVM, the MPI program was re-implemented using the same heuristics and the same logic, but using
PVM calls for message passing instead of MPI.

g



CHAPTER 1 3

GUI Front End using GTK+/ GNOME

As a part of this project, we have developed a set of tools for working with flow graphs. However, it
may be inconvienent for the user to type the commands on the shell prompt. So, for userfriendliness,
we have developed a graphical user interface for these tools. This chapter describes the Ul developed
using the GTK+/GNOME widget toolkits. This Ul was developed by Rahul Joshi. Here, we briefly
describe the functionality of this Ul.

13.1 The Main Window

To start the GUI program, execute therome_gui program. When the program starts, it will display
a main window as shown in figure 13.1.

There a number gbanelsin which the user can open files for viewing or editing. The normal
open, save, close, ndunctionalities have been provided with thée menu. Some of the frequently
used commands are accessible fromttabar below the menu bar. Th8ettings menu lets the
user choose théont size, tab positionandword wrap options. TheAbout menu displays some
information about the program. Here is a description of all the menu items in the menu.

o File

— New — Create a new file

— Open — Open a file for analysis
— Save — Save the file to disk

— Close — Close the current file
— Close All - Close all the files

— Exit — Exit the program

e Operations

— Paths
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Figure 13.1: The main window of the GNOME Ul

«x Back Paths — Generate all the paths in a graph beginning with a back edge
x All Paths — Generate all the paths in a graph
x Elimpaths — Generate a list of nonredundant paths
— Maximal RFG
Dominator Tree — Find the dominator tree of a graph
Depth of Maximal RFG — Find the depth of a Maximal RFG
Maximal RFG — Construct a Maximal RFG from its domiantor tree
Check for Maximal RFG — Check whether the given graph is a maximal RFG or not
Spiral Graph — Construct a spiral graph
Check for Spiral Graph — Check whether the given graph is a subgraph of some spiral
graph
— Heuristics

EEE S SR S

x Original Heuristics — Find node listing using heuristics

x Majority Merge — Find node listing using majority merge

« Simplified Heuristics — Find node listing using simplified heuristics
— Node Listings

x \Verify Nodelisting — Verify the node listing
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x Verify Nodelisting (Trie) — verify the node listing usirtge method
— Miscellaneous

Acyclic Ordering — Find acyclic ordering

Dfnize — Dfnize the flow graph

Check Reducibility — Check for reduciblity of a flow graph
Check Subgraph — Check sibgraph relationship

*

*

*

*

— Manual Density — not implemented
e Settings

— Font — Set font size to small, medium or large
— Tab Positions — Set tab positions to left, right, top or bottom
— Word Wrap — Toggle word wrap setting

e Help

— Help — Displays HTML help about the programs in Netscape Navigator.
— About — Display information about the application

13.2 Working With Graphs

The various operations that can be performed using this program are available urdpetagons

menu. These operations correspond to the programs that we have listed previously in chapter 16.
When an operation is selected, a popup dialog box is displayed wherein the user specifies the input
and output files, as showin in figures 13.2 and 13.2. A brief description of the operation is also
mentioned in the dialog box. If the user wishes so, the output will be displayed in the active panel, if
the corresponding check box is checked.

The program uses theystem() function call of the standard C library to execute the programs.
Apart from that, extensive error checking has been implemented to prevent errors.
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>, Simplified Heuristic - X

First Input File:  |odelisting/examplesizpirala /| Browse...

second Input File: |ages/proj_guifspirald.paths /| Browse...

Cutput File: hodelisting /| Browse. .

[~ show output in active page

The first input file is the graph and the secaond
input file is a list of all the paths in the graph
beginning with a back edge. The generated

hieuristic node listing will be stared in the output
file

QQ Ok, | ‘ & Cancel

Figure 13.2: A dialog box for two input files

*  Dominator Tree - X
Input File: |testl.graph j Browse. ..
Cutput File: [test1 .graph.domtree j Bronwse...

- show output in active panel

The input file is the graph and its dominator
tree will he stored in in the output file

QQ Ok, | ‘ & Cancel

Figure 13.3: A dialog box for a single input file
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13.3 Programming Details

This user interface was built usingvadget toolkitavailable under Linux called as GTK+, which

stands for GIMP Toolkit. This library provides a set of Ul objects calMdgetsusing which we

can build the user interface and a method of instaltiatiback functiongor responding to the users
interactions. Built on the top of the GTK+ library is the GNOME library that provides some additional
widgets and routines for building consistent user interfaces under the X Window System. Apart from
the pre—built widgets, this library also provides commonly used Ul items like file selection dialogs,
toolbars, status bars, message boxes. The programming language used was C. We cannot describe in
detail the implementation of the Ul, but more information about GTK+ and GNOME can be found in

[46, 20, 17, 34].

gon



CHAPTER 1 I

Graphical User Interface using Qt

14.1 About Qt

Qtis a cross-platform C++ GUI application framework. It provides application developers with all the
functionality needed to build graphical user interfaces. Qt is fully object-oriented, easily extensible,
and allows true component programming. Since its commercial introduction in early 1996, Qt has
formed the basis of many thousands of successful applications worldwide. Qt is also the basis of the
popularKDE Linux desktop environment, a standard component of all major Linux distributions. Qt

is a product of Trolltech.

Qtis supported on the following platforms:

1. MS/Windows - 95, 98, NT, and 2000

2. Unix/X11 - Linux, Sun Solaris, HP-UX, Digital Unix, IBM AIX, SGI IRIX and a wide range
of others

3. Embedded - Linux platforms with framebuffer support.

14.2 Qt Object Model

The standard C++ Object Model provides very efficient runtime support of the object paradigm.
On the negative side, its static nature shows inflexibility in certain problem domains. Graphical
User Interface programming is one example that requires both runtime efficiency and a high level
of flexibility. Qt provides this, by combining the speed of C++ with the flexibility of the Qt Object
Model.

In addition to C++, Qt provides

1. a very powerful mechanism for seamless object communication dubbed signals and slots,

2. queryable and designable object properties,
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3. powerful events and event filters,
4. scoped string translation for internationalization,

5. sophisticated interval driven timers that make it possible to elegantly integrate many tasks in an
event-driven GUI.

6. hierarchical and queryable object trees that organize object ownership in a natural way.

7. guarded pointers, QGuardedPtr, that are automatically set to null when the referenced object is
destroyed, unlike normal C++. Pointers become "dangling pointers” in that case.

Many of these Qt features are implemented with standard C++ techniques, based on inheritance from
QObject. Others, like the object communication mechanism and the dynamic property system, re-
quire the Meta Object System provided by Qt’s oiieta ObjectCompiler(moc). The Meta Object
System is a C++ extension that makes the language better suited for true component GUI program-
ming.

14.3 Signals and Slots

Signals and slots are used for communication between objects. The signal/slot mechanism is a central
feature of Qt and probably the part that differs most from other toolkits. In most GUI toolkits widgets
have a callback for each action they can trigger. This callback is a pointer to a function. In Qt, signals
and slots have taken over from these messy function pointers. Signals and slots can take any number
of arguments of any type. They are completely typesafe: no more callback core dumps!

All classes that inherit from QObject or one of its subclasses (e.g. QWidget) can contain signals and
slots. Signals are emitted by objects when they change their state in a way that may be interesting to
the outside world. This is all the object does to communicate. It does not know if anything is receiving
the signal at the other end. This is true information encapsulation, and ensures that the object can be
used as a software component. Slots can be used for receiving signals, but they are normal member
functions. A slot does not know if it has any signal(s) connected to it. Again, the object does not know
about the communication mechanism and can be used as a true software component. You can connect
as many signals as you want to a single slot, and a signal can be connected to as many slots as you
desire. It is even possible to connect a signal directly to another signal. (This will emit the second
signal immediately whenever the first is emitted.) Together, signals and slots make up a powerful
component programming mechanism.

A Small Example

A minimal C++ class declaration might read:

class Foo

(

public:

Foo();

int value() const return val;

void setValue( int);

private:

int val,

);
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A small Qt class might read:

class Foo : public QObject

(

QOBJECT

public:

Foo();

int value() const return val;

public slots:

void setValue(int);

signals:

void valueChanged( int);

private:

int val;

);

This class has the same internal state, and public methods to access the state, but in addition it has
support for component programming using signals and slots: This class can tell the outside world
that its state has changed by emitting a signal, valueChanged(), and it has a slot which other objects
may send signals to. All classes that contain signals and/or slots must mention QOBJECT in their
declaration. Slots are implemented by the application programmer. Here is a possible implementation
of Foo::setValue():

void Foo::setValue(intv)

(

if (v!=val)

(

val = v,

emit valueChanged(v);

)

)

The line emit valueChanged(v) emits the signal valueChanged from the object. As you can see, you
emit a signal by using emit signal(arguments). Here is one way to connect two of these objects
together: Foo a, b;

connect(a, SIGNAL(valueChanged(int)), b,SLOT(setValue(int)));

/Inote : a and b signify address of a and b respectively

b.setValue( 19);

a.setValue(79);

b.value();

Calling a.setValue(79) will make a emit a signal, which b will receive, i.e. b.setValue(79) is invoked.

b will in turn emit the same signal, which nobody receives, since no slot has been connected to it, so it
disappears into hyperspace. Note that the setValue() function sets the value and emits the signal only
if v I= val. This prevents infinite looping in the case of cyclic connections (e.g. if b.valueChanged()
were connected to a.setValue()). This example illustrates that objects can work together without
knowing each other, as long as there is someone around to set up a connection between them initially.
The preprocessor changes or removes the signals, slots and emit keywords so the compiler won't see
anything it can't digest. Run the moc on class definitions that contains signals or slots. This produces
a C++ source file which should be compiled and linked with the other object files for the application.
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14.3.1 Signals

Signals are emitted by an object when its internal state has changed in some way that might be
interesting to the object’s client or owner. Only the class that defines a signal and its subclasses can
emit the signal. A list box, for instance, emits both highlighted() and activated() signals. Most object
will probably only be interested in activated() but some may want to know about which item in the
list box is currently highlighted. If the signal is interesting to two different objects you just connect
the signal to slots in both objects. When a signal is emitted, the slots connected to it are executed
immediately, just like a normal function call. The signal/slot mechanism is totally independent of
any GUI event loop. The emit will return when all slots have returned. If several slots are connected
to one signal, the slots will be executed one after the other, in an arbitrary order, when the signal is
emitted. Signals are automatically generated by the moc and must not be implemented in the .cpp file.
They can never have return types (i.e. use void). Signals and slots are more reusable if they do not
use special types. If QscrollBar::valueChanged() were to use a special type such as the hypothetical
QRangeControl::Range, it could only be connected to slots designed specifically for QRangeControl.

14.3.2 Slots

A slot is called when a signal connected to it is emitted. Slots are normal C++ functions and can be
called normally; their only special feature is that signals can be connected to them. A slot’s arguments
cannot have default values, and as for signals, it is generally a bad idea to use custom types for slot
arguments. Since slots are normal member functions with just a little extra spice, they have access
rights like everyone else. A slot’s access right determines who can connect to it.

A public slots: section contains slots that anyone can connect signals to. This is very useful for com-
ponent programming. You create objects that know nothing about each other, connect their signals
and slots so information is passed correctly, and, like a model railway, turn it on and leave it running.
A protected slots: section contains slots that this class and its subclasses may connect signals to. This
is intended for slots that are part of the class’ implementation rather than its interface towards the rest
of the world.

A private slots: section contains slots that only the class itself may connect signals to. This is intended
for very tightly connected classes, where even subclasses aren't trusted to get the connections right.
Of course, you can also define slots to be virtual. It is found to be very useful. Signals and slots are
fairly efficient.

14.4 Meta Object Information

The meta object compiler (moc) parses the class declaration in a C++ file and generates C++ code that
initializes the meta object. The meta object contains names of all signal and slot members, as well as
pointers to these functions. The meta object contains additional information such as the olaisst's
name. You can also check if an obj@dherits a specific class,

for example:

if (widget—inherits("QButton”) )

/litis a push button, radio button etc.
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14.4.1 Using the Meta Object Compiler

The Meta Object Compiler is the program which handlesGhe extensionsn Qt The moc reads

a C++ source file. If it finds one or more class declarations that contain the QOBJECT macro, it

produces another C++ source file which contains the meta object code for this class. Among other
things, meta object code is required for the signal/slot mechanism, runtime type information and the
dynamic property system. The C++ source file generated by the moc must be compiled and linked
with the implementation of the class (or it can be included into the class’ source file).

1. The class declaration is found in a header (.h) file. If the class declaration above is found in
the file myclass.h, the moc output should be put in a file called moc-myclass.cpp. This file
should then be compiled as usual, resulting in an object file moc-myclass.o (on Unix) or moc-
myclass.obj (on Windows). This object should then be included in the list of object files that
are linked together in the final building phase of the program.

2. The class declaration is found in an implementation (.cpp) file If the class declaration above
is found in the file myclass.cpp, the moc output should be put in a file called myclass.moc.
This file should be included in the implementation file, i.e. myclass.cpp should include "my-
class.moc” after the other code. This will cause the moc-generated code to be compiled and
linked together with the normal class definition in myclass.cpp, so it is not necessary to compile
and link it separately, as in Method 1.

Method 1 is the normal method. Method 2 can be used in cases where one for some reason wants the
implementation file to be self-contained, or in cases where the QOBJECT class is implementation-
internal and thus should not be visible in the header file.

14.4.2 Automating moc Usage with Makefiles

For anything but the simplest test programs, it is recommended to automate the running of the moc.
By adding some rules to the Makefile of your program, make can take care of running moc when
necessary and handling the moc output.

14.5 GUI for Node Listing Based Data Flow Analysis

The GUI for this project is written in Qt 2.1.0 under Linux. There is a basic main editor window
which provides the user with standard file operations like ‘open’, 'save’, 'save as’, ‘print’, ‘close’ and
so on. The operations to be performed on the graphs and/or their paths are available on the ‘graph
operations’, ‘path operations’ and some ‘miscellaneous operations’ menus on the main menu bar.

The following operations are allowed on graphs
1. listing all paths
2. listing all paths beginning with backedges
3. dominance relationship of a graph

4. reduciblity check
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acyclic ordering of a graph
dfnize a graph
check for Max Rfg

© N o O

check for Spiral Graph
The following operations are allowed on paths

1. elimation of redundant paths

2. majority merge heuristic algorithm for node listing
The following operations have miscellaneous inputs

construction of Max Rfg from Dominator tree
matrix construction

node listing of the graph

verify a node listing

checking for subgraph

simpified heuristic algorithm for node listing

N oo o M w NhoPRE

construction of spiral graph

There is also a Help on programs’ menu which mainly provides information on each of the above
programs.The file main.htm gives the index to help and can be viewed through any browser. Learning
Qt and the development of the graphical user interface was done by Medha Trivedi.
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Software Used

In this appendix, we list all the software that was used during the project. The implementation plat-
form for this project was chosen Beux, due to the availability of the large number of programming
tools as well as the toolexandyacc Here is a list of all the software that was used.

[0 Red Hat Linux versions 5.2, 6.1 and 6.2 [0 dvips a DVI to Postscript converter

[0 Sun Solaris 2.6 [0 Ghostview, a Postscript and PDF viewer
[ GNU C Compiler (GCC) O xfig, Facility for interactive generation of
0 GNU C++ Compiler (G++) figures under X11
O GNU Debugger (GDB) 0 Qt, a cross—platform C++ GUI application
framework
[0 flex fast lexical analyzer generator , ,
0 GTK+, The GIMP Tool Kit, a library for

[0 yacg an LALR(1) parser generator creating GUI's for X Window System.
O GNU Make [0 GNOME, a set of libraries and applica-

o tion environment for developing consistent
[0 RCS (Revision Control System) GUI's under X Window System
. .GNU Awk; a pattern scanning and process- O Glade, a user interface builder for the

ing language (GAWK) GTK+ toolkit

OO groff, a document formatting system for
manual pages

|

Parallel Virtual Machine, PVM version 3.3

|

O IATEX2., a document preparation system Local Area Multicomputer (LAM), an MP!
programming environment

[0 BIBTEX, bibliography generation tool ] ]
[0 LinuxThreads, a POSIX 1003.1c threads li-

[0 Makelndexan index generation tool brary
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Program Manual

As a part of this project, we have developed a library of tools for performing various operations on
flow graphs and obtaining the data needed for the experiments. The input (be it a graph, a dominator
tree, a list of paths etc.) is describes in a text file and it is first parsed by the program. The parser and
the lexical analyzer were automatically generated by using the teslandYacc In this appendix,

we list the manual for the tools and programs developed during the project. The programs were
developed by Rahul U. Joshi.

ENVIRONMENT

Two environment variables affect the functioning of these program. If the environment véhable
L_DEBUG?” is set and is nGtFALSE”, debugging mode is enables and the program produced debug-
ging messages. In case debugging mode is enabled, the debugging output goes to the file indicated
by the environment variabldNL _DEBUG_OP” or to the standard error fNL _DEBUG OP” is not

set.

EXIT CODES

All the programs, on successful execution return an exit &xXld _SUCCESnd on failure return

an exit codeEXIT _FAILURE . These macros are defined in the headershit#ib.h asl and0
respectively. These exit codes can then be used in shell scripts to query the exit status of a program
by checking,

< some command >;

# Check the exit code of the command

if [ $2 -ne 0 ]; then
echo "$0: Cannot execute command";
exit 1;

fi

COMMENTS
Allthe input files, whether containing a graph description, paths etc. are allowed to contain comments.
The comments are single line, they begin with a number sign (#) and continue till the end of the line,
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as follows
# This is a spiral (2b) graph of 4 nodes.
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| ALLBACKPATHS |

NAME
allbackpaths- Program to generate all acyclic paths in a reducible flow graph that begin with a back
edge.

SYNOPSIS
allbackpaths <input _graph> > <paths file>

DESCRIPTION

allbackpathgs a program to generate all the acyclic paths in a reducible flow graph that begin with

a back edge. It takes as an input a description of the reducible flow graph from either a file or the
standard input. It generates the paths and writes then to the standard output. Along with the actual
path, it also prints the number of back edges and forward edges in the path. Each output line consists
of a single path in the following form:

Nodel Node2 ... NodeK ; NoOfBackEdges ; NoOfFwdEdges ;

BUGS AND INEFFICIENCIES
The program generates the same path more than once in its output, so probably there is some overhead
on other programs to look for identical paths in the output and neglect them.

SEE ALSO
allpaths, elimpaths, graphinput
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NAME
acyclic- Program to generate acyclic ordering of a reducible flow graph.

SYNOPSIS
acyclic <input_graph> > <paths file>

DESCRIPTION

acyclicis a program to generate the acyclic ordering of a reducible flow graph. An acyclic ordering
of a reducible flow graph is a sequence of nodes (without repetitions) such that all the acyclic paths
in the flow graph that start with the initial node (the header) are a subsequence thereof. The program
takes as an input a description of the reducible flow graph from either a file or the standard input.
It generates the acyclic ordering and writes it to the standard output. Along with the actual acyclic
ordering, it also prints the (hypothetical) number of back edges and forward edges in the path. The
output has the following format:

Nodel Node2 ... NodeK ; NoOfBackEdges ; NoOfFwdEdges ;

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
allbackpaths, elimpaths, graphinput
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|ALLPATHS |

NAME
allpaths - Program to generate all acyclic paths in a reducible flow graph.

SYNOPSIS
allpaths <input _graph> > <paths file>

DESCRIPTION

allpathsis a program to generate all the acyclic paths in a reducible flow graph (those that begin with
a back edge as well as those that begin with a forward edge). It takes as an input a description of the
reducible flow graph from either a file or the standard input. It generates the paths and writes then to
the standard output. Along with the actual path, it also prints the number of back edges and forward
edges in the path. Each output line consists of a single path in the following form:

Nodel Node2 ... NodeK ; NoOfBackEdges ; NoOfFwdEdges ;

BUGS AND INEFFICIENCIES
The program generates the same path more than once in its output, so probably there is some overhead
on other programs to look for identical paths in the output and neglect them.

SEE ALSO
allbackpaths, elimpaths, graphinput
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NAME
brute - Program to generate a C program that finds the density of a graph by using the brute force
method.

SYNOPSIS
brute <density> <no of nodes-

DESCRIPTION

bruteis a program to generate a C program that finds the density of a flow graph by using brute force
method i.e. generating all possible node listing and finding the minimum density value. The program
takes two inputs from the command line, the known density of the graph and the number of nodes of
the graph. The program then generates a C function called “density()” that finds the density of the
graph by brute force method. This function consists of (density x no of nodes) nested for loops. To
use this function, append it at the end of the fteemplate parse” present in the same directory as
brute Now compile the file using lex and yacc. A template makefile is also present in the directory.
This program now takes the list of paths in the flow graph as its input and finds the density. For more
information, read the “readme” file in the same directorpage

BUGS AND INEFFICIENCIES
No bugs known, but the programhgyhly inefficient. For even a moderate number of nodesaiitnot
be run sequentially on a single processor machine.

SEE ALSO
graphinput, elimpaths, heuristic, readme file in “brute” directory
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NAME
depth - Shell script to find the depth of a flow graph

SYNOPSIS
depth < <paths file>

DESCRIPTION

depthis a shell script to find the depth of a flow graph given the list of either all the acyclic paths in
the flow graph (as produced by the prograltpathg or the list of all acyclic paths that begin with a
back edge (as produced by the prograibackpaths.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
allpaths, allbackpaths, elimpaths, graphinput
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' DEPTH-MAX |

NAME
depth-max- Program to find the depth of a maximal reducible flow graph

SYNOPSIS
depth <dominator_tree>

DESCRIPTION

depth-maxs a program to find the depth of a maximal reducible flow graph given the dominator tree
of the maximal rfg. The dominator tree is described in the same format as the outfnrhofance

The program finds the depth of the maximal rfg corresponding to that dominator tree and prints it on
the standard output. This program is much more efficientdbpth especially for maximal rfgs with

large number of nodes, as it may take a long time to generate all the acyclic paths that begin with a
back edge.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
depth, dominance, max-RFG
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NAME
dfnize - Program to dfnize a flow graph i.e. replace each node by its dfn number.

SYNOPSIS
dfnize <graph_file> > <dfnized_graph file>

DESCRIPTION

dfnizeis a program to dfnize a flow graph i.e. replace each node in the flow graph by its dfn number.
The program takes as input the description of the graph to be dfnized and generates an isomorphic
graph by replacing each node of the input graph by its dfn number. Such a graph is normally easier
to work with because the edge — n is a back edge in such a graph onlyi& m.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
graphinput
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' DOMINANCE |

NAME
dominance- Program to find the dominance relation in a reducible flow graph.

SYNOPSIS
dominance<input_graph> > <dominator file>

DESCRIPTION

dominancas a program to find the dominance relation in a reducible flow graph. It takes as its input
the description of the graph as describediaphinputand produces as its output the dominator tree
of the flow graph. The output afominancehas the following format:

NodeO list of children of NodeO in dominator tree ;
Nodel list of children of Nodel in dominator tree ;

NodeK list of children of NodeK in dominator tree .

<root of the dominator tree>

In this output, the<root of the dominator tree > is nothing but the header of the
flow graph as specified in the input file. Also the list of the immediate children of a node in the output
is arranged according to the “natural” order of the children as described in the definition of a maximal
reducible flow graph.

BUGS AND INEFFICIENCIES
There was one, but it has been removed.

SEE ALSO
max-RFG, graphinput
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|ELIMPATHS |

NAME

elimpaths - Program to eliminate redundant paths from the input.

SYNOPSIS
elimpaths <paths file> > <non_redundant_paths.file>

DESCRIPTION

elimpathss a program to eliminate all the redundant paths from the input. That is the program takes
a list of paths and from it eliminates any redundant paths and produced a list of non-redundant paths
as its output. Thus, in the output, no path is a subsequence of any other path.

BUGS AND INEFFICIENCIES
Many were known, but all have been (hopefully) fixed.

SEE ALSO
lallbackpaths, allpaths, graphinput
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NAME

Exe.sh- Driver Shell script to find heuristic node listing.

SYNOPSIS
Exe.sh<graph_file>

DESCRIPTION

Exe.shis a driver shell script to find the heuristic node listing of a flow graph. The graph is specified
as a command line argument. The shell script checks whether the graph is reducible, creates a list of
non-redundant paths in the flow graph that begin with a back edge and then finds the heuristic node
listing.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
heuristic, reducible, allbackpaths, elimpaths, graphinput
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'GRAPHINPUT |

NAME
graphinput - Description of the input format to describe a graph.

DESCRIPTION
This manual page describes the input format to describe a graph. Many programs take an input graph
and produce some results. The input description of the graph has the following form:

NodeO <list of successors of NodeO> ;
Nodel <list of successors of Nodel> ;

NodeK <list of successors of Nodek> .

<NoOfNodes> <Header> <Depth>

Comments can also be included in the input file. A comment begins with a sharp (#) and continue
till the end of line.

SEE ALSO
allbackpaths, elimpaths, graphinput
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'HEURSITIC|

NAME
heursitic - Program to find the node listing for a reducible flow graph using “heuristic” algorithm.

SYNOPSIS
heuristic <graph_file> <paths file>

DESCRIPTION

heuristicis a program to find the node listing of a reducible flow graph by using the “heuristic” node
listing algorithm as given in Khedker Sir's “Exe” file. The program takes as input the graph as well
as the list of paths in the graph that begin with a back edge. It then prints the generated node listing
to the standard output. The node listing is terminated with a period(.). You can directly append the
list of all the paths that begin with a back edge to the output and check for the validity of the node
listing using theverifynl program.

In case debugging is enabled, the program also prints the paths considered, the nodes added
during the construction of the node listing as well as the node listing in a tabular form to the debug
output stream. The program always gives the density of a flow graph as less then or equal to its depth.

BUGS AND INEFFICIENCIES
No bugs, but the node listing generated by the program is not the “optimal” or the “minimal’ node
listing.

SEE ALSO
graphinput, allbackpaths, elimpaths, verifynl, sheuristic
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NAME
ismax - Program to find whether a flow graph is a maximal reducible flow graph or not.

SYNOPSIS
ismax <graph_file>

DESCRIPTION

ismaxis a program to test whether the given flow graph is a maximal reducible flow graph or not. The
input is a description of the flow graph of the same format as describg@phinput The program

finds whether the input graph is a maximal reducible flow graph or not by adding edges not present
in the graph and testing whether the graph becomes irreducible or not. It then prints a message to that
effect on the standard output.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
graphinput, max-RFG
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ISSPIRAL |

NAME

isspiral - Program to find whether a given flow graph is a subgraph of any spiral graph.

SYNOPSIS
isspiral <dominator file>

DESCRIPTION

isspiralis a program to find whether the given flow graph is a subgraph of some spiral graph having
the same number of nodes. The input is the dominator tree of the flow graph. The format of the
dominator tree is the same as the outputominance The output of the program is a message
indicating whether or not the flow graph is a subgraph of some spiral graph.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
dominance, spiral
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NAME
matrix - Program to find the matrix of levels for a reducible flow graph.

SYNOPSIS
matrix <graph_file> <non_redundant_paths file>

DESCRIPTION

matrix is a program to find the matrix of levels in a reducible flow graph. It takes the graph and the
list of non-redundant paths in the graph and constructs the matrix for that graph and prints it on the
standard output. The level 0 of the matrix is assumed to have all the nodes in the graph and hence it
is not printed. All the other levels are printed. Each output line has the following format:

Level { List of nodes in that level }

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
graphinput, allbackpaths, elimpaths
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MAX-RFG |

NAME
max-RFG - Program to construct a maximal reducible flow graph.

SYNOPSIS
max-RFG <dominator file> > <maximal_graph>

DESCRIPTION

max-RFGis a program to construct the maximal reducible flow graph given the dominator tree of
the flow graph. The format of the dominator tree is the same as the outplonghance Thus,

the program expects that the children of a node are listed in their “natural” order. The output of the
program is a description of the maximal reducible flow graph having the same format as described in
graphinput Thus, if we construct the dominator tree of a given reducible flow graph dsimgnance

and then construct the maximal reducible flow graph for that dominator tree, we expect that the
original graph will be a subgraph of the maximal reducible flow graph.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
dominance, graphinput, subgraph
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'MMHEURISTIC|

NAME

mmbheuristic - Program to find the node listing using thejority mergeheuristic.

SYNOPSIS
mmbheuristic <path _file>

DESCRIPTION

mmbheuristids a program to find the node listing of a flow graph by usingNtsgority Mergealgo-

rithm. The input is a list of the paths in the flow graph, in the same format as producdibaths

The program does not neglect the first node in the path, so it is better to give the input from the output
of allpaths It finds the node listing and also the density of that node listing and displays the results
on the standard output.

BUGS AND INEFFICIENCIES
None known as of yet, but the node listing produced is not the minimal node listing.

SEE ALSO
heuristic, sheuristic, Exe.sh, allpaths
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NAME

ni2b - Program to find the node listing of a (2b) spiral graph.
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NAME
reduce- Program to reduce a reducible flow graph to minimum number of nodes by Tisigge 1
transformations.

SYNOPSIS
reduce <graph_input >

DESCRIPTION

reduceis a program to reduce a reducible flow graph to minimum number of nodes by Tising
type 1 transformations. It takes as input the graph to be reduced and goes on afiplyypg

1 transformations until no transformation can be applied. It then prints the resulting graph to the
standard output.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
graphinput
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'REDUCIBLE |

NAME

reducible - Program to find whether a flow graph is reducible or not.

SYNOPSIS
reducible <graph_file>

DESCRIPTION

reducibleis a program to test whether the given flow graph is reducible or not. The input is a descrip-
tion of the flow graph of the same format as describegraphinput The program finds whether the
input graph is reducible or not by repeated applications,dnd7; transformations. It then prints a
message to that effect on the standard output.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
graphinput
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SHEURISTIC|

NAME
sheuristic - Program to find the node listing for a reducible flow graph using “simplified heuristic”
algorithm.

SYNOPSIS
sheuristic <graph_file> <paths file>

DESCRIPTION

sheuristicis a program to find the node listing of a reducible flow graph by using the “simplified
heuristic” node listing algorithm. The program takes as input the graph as well as the list of paths in
the graph that begin with a back edge. It then prints the generated node listing to the standard output.
The node listing is terminated with a period(.). You can directly append the list of all the paths that
begin with a back edge to the output and check for the validity of the node listing usinerifnl
program.

In case debugging is enabled, the program also prints the paths considered, the nodes added
during the construction of the node listing as well as the node listing in a tabular form to the debug
output stream. The program always gives the density of a flow graph as less then or equal to its depth.
The program uses a more efficient and simple algorithm treuristic and hence the program is
much better.

BUGS AND INEFFICIENCIES
No bugs, but the node listing generated by the program is not the “optimal” or the “minimal” node
listing.

SEE ALSO
graphinput, allbackpaths, elimpaths,verifynl
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NAME
spiral - Program to generate a spiral graph.

SYNOPSIS
spiral <node order>

DESCRIPTION

spiral is a program to generate a spiral graph given the order in which the nodes are added and also
the rules by which the nodes are added. The order and rules are described in the input file in the
following format:

Initial node
<rule> nodel;

<rule> nodek;

where<rule> can be either ‘a’ or ‘b’ corresponding to rules (2a) and (2b). The “Initial node” is
always added using rule 1. Then the nodes are added in the order nodel, node2, ..., nodek using the
rule corresponding to that node.

The program does not generate the spiral graph directly. Instead, it generates the dominator tree
of the spiral graph in which all the children of a node are arranged in their “natural” order. The format
of the output dominator generated by the program is describddnmnance Once the dominator
tree of the spiral graph is generated, the spiral graph can be generated usimaxtR$-Gorogram.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
graphinput, dominance, max-RFG
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'SUB_OF _SPIRAL |

NAME

sub_of_spiral - Program to check for a subgraph of a spiral graph.

SYNOPSIS
sub_of_spiral <graph_description>

DESCRIPTION

suhof spiral is a program to find whether the given graph is a subgraph of any spiral graph with the
same number of nodes. It is a “brute—force” program, generating all the spiral graph and checking
whether the given graph is a subgraph of any one of them. It generates all the spiral graphs having
the given number of nodes by,

1. Generating all permutations of the nodes fil@m. n — 1. The nodes will be added to the spiral
graph in the order in which they appear in the permutation.

2. For a given permutation, adding the first node using rule (1) and adding the other nodes using
all possible combinations of rules (2a) and (2b).

Thus, forn nodes, the program generates a totahbf< 2"~! spiral graph and checks each
of them. This program was written to give an experimental contradiction to the statement “Every
reducible flow graph of. nodes is a subgraph of some spiral graph abdes.”

BUGS AND INEFFICIENCIES
None known as of yet, but the brute force nature makes the program too inefficient. For efficient
verification of subgraphs of spiral graph, use the progisspiral.

SEE ALSO
graphinput, spiral, isspiral
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| SUBGRAPH |

NAME

subgraph - Program to check subgraph relationship.

SYNOPSIS
subgraph <super_graph> <sub_graph>

DESCRIPTION

subgraphis a program to check subgraph relationship between two graph. It takes as input two
graphs, a “super graph” and a “sub graph”. It then checks whether the “sub graph” is a subgraph
of the “super graph” and prints a message to that effect. The input graphs must be described in the
format as described igraphinput

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
graphinput, max-RFG, dominance




Program Manual 137

'VERIFY-ELIMPATHS |

NAME
verify-elimpaths - Program to verify the list of non-redundant paths.

SYNOPSIS
verify-elimpaths <paths file>

DESCRIPTION

verify-elimpathgs a program to verify that the list of non-redundant paths as producetirbpaths
is indeed correct. Thus, itis used to cross check the outpltropaths The input file is divided into
two sections by a percent (%) sign as follows:

<List of non - redundant paths>
%

<List of all the paths>

The first section is a list of all the non-redundant paths and the second section is the list of all the
paths from which the list of non-redundant paths was produced. The program verifies the list by first
reading the list of all the non-redundant paths and checking that no path in this list is a subsequence
of any other path in the list. If it comes across such a situation, it declares the list as invalid. After
that, it starts reading the list of all the paths and checks that every path in this list is a subsequence of
some path in the first list. If it finds some path in the second list which is not a subsequence of any
path in the first list, it declares the list as invalid, else it declares the list as valid.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
allbackpaths, elimpaths
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'VERIFYNL |

NAME
verifynl - Program to verify the node listing.

SYNOPSIS
verifynl <node list_file>

DESCRIPTION
verifynlis a program to verify that the given node listing for a graph is indeed a node listing for the
graph. The input file had the following format:

NodeListing.

<List of paths>

The first part consists of the node listing terminated by a period(.). Following the node listing is
the list of all the paths beginning with a back edge. This list can be the one that is produced either
by allbackpathsor elimpaths The program verifies the node listing by checking that every path in
the list of paths is a subsequence of the node listing. Once the node listing is verified, it also prints
the maximum value of the density of the graph by counting the maximum number of times the node
appears in the node listing.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
allbackpaths, elimpaths
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'VERNL-TRIE |

NAME
vernl-trie - Program to verify the node listing.

SYNOPSIS
vernl-trie <node.list_file>

DESCRIPTION

vernl-trie is a program to verify that the given node listing for a graph is indeed a node listing for the
graph. The input file has the same format as mentione@iifiynl. Once the node listing is verified,

it also prints the maximum value of the density of the graph by counting the maximum number of
times the node appears in the node listing. This program uses a data structureriedibederifying

the node listing and theoretically is more faster tharifynl.

BUGS AND INEFFICIENCIES
None known as of yet.

SEE ALSO
allbackpaths, elimpaths, verifynl




CHAPTER

Algorithms

Finding the acyclic ordering of a flow graph

. Read the input graph and perform a depth first traversal on it to find the depth first
numbers of the nodes.

. Calculate in “indegree” of each node by without considering the self loops and the back
edges. This is because acyclic ordering is found out on a graph with no back edges
and self loops are back edge by definition.

. Find a node in the graph with indegree = 0. If no such node can be found, then probably
there is an error in the input graph, it may not be reducible.

. List that node in the acyclic ordering. Make the indegree of that node as —1 so that it
is not processed during the next iteration.

. Decrease the indegree of all the successors of that node by 1, again without consider-
ing self loops and back edges.

. Repeat the steps 3 to 5 until all the nodes are listed.

Algorithm 14: Finding the acyclic ordering of a flow graph
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Checking the reducibility by 77-T5 transformation

We know the algorithm for checking flow graph reducibility by repeated application of 77 and
T, transformations. In this program, we use a modified form of this algorithm which does
not require the application of 7 transform and the 75 transforms are applied “incrementally”
so that many of the repeated calculations are avoided. Thus this algorithm is more efficient
than the earlier one.

1. Read the graph from the input. During the reading step itself, eliminate self loops.
Thus here we are applying a 7} transformation implicitly.(However, after this step, we
never need to apply a 77 transformation.)

N

. Initialize the number of predecessors array to 0. This array stores the number of pre-
decessors of each node.

3. for each edge i — j in the graph do
increment noOfPredecessors());
remember ; as the predecessor of j by setting thePredecessor(j) :=i;
end for

N

. Find a node n not the initial node and having a singe predecessor m. If such a node
cannot be found, end the computation.

a1

. Remove the node n from the graph and set noOfPredecessors(n) = 0.

o

for each edge n — i,i % m in the graph do
if there is an edge m — i then
decrement noOfPredecessors(i);
end if
add the edge m — i in the graph;
set thePredecessor(i) := m;
end for

7. if there was an edge n — m in the original graph then
decrement noOfPredecessors(m);
if n is the predecessor of m that we have remembered then
thePredecessor(m) := some other predecessor of m.
end if
end if

(o]

. Go to step 4.

Algorithm 15: Checking reducibility byl;-75 transformations
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In this algorithm, we maintain a stack of nodes where each element on the stack is of
the form <node, count> where count is the position of node in the acyclic path formed.
Whenever a node is added to the path, we push all its successors on the stack with a count
as 1 greater than that of the node, since the successor will be immediately after the node in

the path.

1. Read the graph and store it in an adjacency matrix.

2. Initialize and empty stack of nodes, say S.

3. For all nodes in the graph, push <node, 0> on stack S.

4. Go on doing the following steps until the stack becomes empty.

5. Pop a <node, count> from the stack.

6. If node is already included in the path, we have obtained an acyclic path in the flow
graph, so print it.

7. See the next node on the top of the stack (do not pop it) and flag all the nodes that will
not be in the next path as false. Go to step 5.

8. Add node to path at the position indicated by its count and flag the node as true to
indicate that it is present in the path.

9. Push all the successors of node on the stack with count one greater than the count for
node.

10. Gotostep 4

Generate all the paths in a reducible flow graph

Algorithm 16: Generate all paths in a flow graph
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Generate all the paths in a reducible flow graph that begin with a back edge

In this algorithm, we maintain a stack of nodes where each element on the stack is of
the form <node, count> where count is the position of node in the acyclic path formed.
Whenever a node is added to the path, we push all its successors on the stack with a count
as 1 greater than the that of the node, since the successor will be immediately after the node
in the path.

1. Read the graph and store it in an adjacency matrix.

2. Perform a depth first traversal of the graph and find the “dfn” numbers for all nodes, as
given in [5].

Initialize and empty stack of nodes, say S.
For all nodes in the graph, push <node, 0> on stack S.
Go on doing the following steps until the stack becomes empty.

Pop a <node, count> from the stack.

N e g M w

If node is already included in the path, we have obtained an acyclic path in the flow
graph, so print it.

8. See the next node on the top of the stack (do not pop it) and flag all the nodes that will
not be in the next path as false. Go to step 5.

9. Add node to path at the position indicated by its count and flag the node as true to
indicate that it is present in the path.

10. Initialize hasBackEdge = false, to indicate that currently we have found no back edge
beginning from node.

11. Push all the successors of node on the stack with count one greater than the count for
node. Since we are interested only in paths that begin with a back edge, when pushing
the second node (count = 1), see to it that we push only those successors of node
for which the edge node — successor is a back edge. If any such successor of node is
found, make hasBackEdge true.

12. Once pushing of all the successors of node is completed, in case we were pushing the
successors of the first node and hasBackEdge = false, then there was no back edge
from the node, so there is no acyclic path beginning with a back edge that starts from
this node. So, flag this node as false to indicate that it is not present in the path.

13. Gotostep5

Algorithm 17: Generate all paths in a flow graph that begin with a back edge
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Finding the node listing of the graph by simplified heuristics

In this algorithm, the paths are processed in a decreasing order of the depth of the paths.
For each path, we assign a “span” (a sequence of nodes between two consecutive back
edges) to the corresponding level. This algorithm will always give density < depth of the
graph. It is much simpler than the one implemented in heuristic since the reverse traversal
is avoided and the algorithm is much easier to understand.

1. Read the graph and find the depth first numbers (dfn) for each node by performing a
depth first traversal.

2. Read all the paths that begin with a back edge and store them in a linked list. While
reading the paths, do not store the first node in the path as it will be covered in the
initial traversal.

3. Now add the path to the node listing one by one beginning from paths having maximum
depth to paths having minimum depth (1).

4. To add a path to the node listing:

(a) Initialize level := 0

(b) add the first node to level =0
(c) for all the further nodes do
if we traversed a back edge then
level .= level + 1;
add node to level;
end if
end for

Algorithm 18: Simplified heuristic node listing
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Finding the dominators is the similar to the iterative data flow analysis. The method is akin
to forward data flow analysis with intersection as the confluence operator. For each node
n, we calculate D(n), the set of dominators of n. In the real program, we also perform an
“inverse transitive closure” operation to find the immediate dominators of the nodes so as to

Finding the dominators

construct the dominator tree.

1:

D(ng) := {no};

2: for nin N — {nq} do
3:
4: end for

D(n) := N;,

/* End Initialization */

5: while changes to any D(n) occur do

@

for nin N — {nq} do
D(n) :={n}U < N D(p));

pEpredec(n)
end for

end while

Algorithm 19: Dominator computing algorithm
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In this appendix, we present the following main papers that were referenced during the project work.

[0 Node Listings Applied to Data Flow Analysig Ken Kennedy [22].
[0 Node Listings for Reducible Flow Graphisy Al Aho and J.D. Uliman [4].
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Node Listings Applied to Data Flow Analysis

K. W. Kennedy
Rice University

ABSTRACT

A new approach to global program data flow analysis which constructs a “node listing” for the control flow
graph is discussed and a simple algorithm which uses a node listing to determine the live variables in a pro-
gram is presented . This algorithm combined with a fast node listing constructor due to Aho and Ullman has
produced arO(n logn) algorithm for live analysis.The utility of the node listing method is demonstrated by

an examination of the class of graphs for which “short” listings exist. This class is quite similar to the class of
graphs for “understandable” programs.

1. INTRODUCTION

When analyzing computer programs at compile time for code optimization, one encounters a
class of problems which requires the construction of “data flow” information from the control flow
graph. Many algorithms for the construction of such information have appeared in the literature most
of these solve a specific problem and requig?) “extended” or “bit vector” steps where is the
number of vertices in the control graph. Recently Ullman[U] published an algorithmic method which
can be used to solve a number of these probleni¥inlog n) extended steps.

The purpose of the current work is to follow a new line of attack: from the control flow graph of a
program we construct an intermediate representation of the flow called “node listing”, which is then
used to solve data flow problems.

This paper is primarily devoted to an introductory treatment of the basic concepts surrounding the
node listing. The final section, however, investigates the class of graphs for which the node listing
method produces linear time algorithms for data flow analysis.

2. CONTROL FLOW ANALYSIS

The flow analysis of a program usually begins with the program expressed in some intermediate
text which is scanned and subdivided iftasic blockssequence of instructions which are always
executed in order. After the last instruction in a block, control may transfer to any one of a number
of basic blocks calleduccessorsf the block just executed.

We may represent a program by ésntrol flow graph(or flow graph) in which each node represents
a basic block and each edge represents a possible block-to-block transfer. A flow graph is therefore a
triple G = (N, £, ng) where

1. N is a finite set of nodes,
2. Fis afinite set of edges (a subset/®dfx N), and

3. ng is the unique node with no predecessors, callegotbgram entry node
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In these terms we may define the set of succesSargof a block x:
S(x) =y € N|(z,y) € E.
Similarly,we defineP(x), the set ofpredecessorsf x:
P(z) =y € N|(y,z) € E.

A pathin the control flow graph fromm,; to n; is a sequence of nodgs;, no, ... ,n;) such that
(n1,ni41) € E,1 < i < k. Thepath lengthof (ny,ns,... ,ng) is k — 1, the number of edges
used in traversing the path. gimple paths a path in which no node is repeated except possibly the
first (which may also be the last). gimple cyclés a simple pathin;,ny ... ,nt), & > 1, such that

ny = ng.

3. DATA FLOw ANALYSIS

We shall consider data flow analysis by studying a representative problem, that of locating “live”
variables within a program. Given an item(varial¥@, which is defined at various points in a pro-
gram. We wish to determine for each paint the program flow graph whether or ngtwill be used
after control leavep. We say thatX is live atp if it can be used again ardead atp otherwise. The
“live” information would be useful in register allocation for example, since the value of a variable
which can never be used again need not be saved.

For simplicity, we formulate another version of this problem: for each blaokthe program, deter-
mine the setive(b) of variablesX for which there is a path from the entry pointiofo a use ob,
which path isX-clear (contains no redefinition of the variabl). We can now translate this problem
to one of solving a system of boolean equations.ihgitle}) be the set of variable¥ which are live
on entry to blockh because there is a use &fwithin b which is not preceded by a redefinition. Let
thru(b) be the set of variableX for which there exists aX -clear path through. Note that the sets
inside$) and thru}) can be computed by a local examination of bléck

Now there exists atX -clear path from the entry dfto a use ofX if and only if there exists such a
path to a use within or throughb to a successor dfand there to a use. In equation form:

(¥)live(b) = inside(b) U meLSJ(b)(thru(b) N live(x)) .

The solution to this system of equations clearly provides a solution for our simplified live analysis
problem.

Several methods for the solution @) have been proposed [Kel,Ke2,HU1,Ki]; curiously, all the pro-
posed methods involv@®(n?) algorithms even though Uliman’s method [U] provides@fmn log n)
algorithm for a related but somewhat different problem. The author knows of no published algorithm
to solve(x) which is faster tha®(n?); in particular the method of Ullman cannot be adapted to live
analysis in a straight forward way.

We here present the simplest way of solving the live equations in hopes of finding its sources of
inefficiency. Suppose we begin with all the live sets empty and iterate through the graph applying
equation(x) until none of the live sets change. This method adapted from Hecht and Ullman [HU1].
ALGORITHM A: Live Analysis (Hecht and Ullman)

Input:
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1. Aflow graphG = (N, E, ny), | N| = n, with the nodes numbered froirto »n in some suitable
manner. Each node is referred to by its number.

2. Setghru(j) andinside() forall j,1 < j <n

Output: Sets livef), 1 < j < n.
Method:

1. Initially, let live(y) = inside(), 1 < 5 < n.

2. Dostepcfor j =1,2,... ,ninorder. If any liveg) changes for any, repeat step; otherwise
halt.

3. Apply equationx) to blockj.

Hecht and Ullman have shown that this algorithm is correct and thabstépbe executed at most

d+ 2 times wherel is equal to the maximum number of backward branches in any simple path within
the flow graph [HU1]. Since steprequires|S(j)| + 1 bit-vector steps and it is applied to every node

in the graph for each execution iyfa total of(d + 2)(|E| + | N|) bit-vector steps are required. It can

be shown that [HU1,Ke3] that is O(|E|) in the worst case so the algorithm may requirg £|*)
bit-vector steps O(n?) whenever the graph is restricted so that < k| N| = kn for some fixedk ).

There seem to be two major areas of inefficiency in this approach. First, an extra pass through the
program is required to discover that no sets have changed. This and the testing for changed sets on
every pass produces a lot of unnecessary work that might be avoided if we could somehow know when
to halt the iteration. Second, iteration over every node in each pass seems to be overkill. The problem
is to iterate exactly enough times to transmit information along any simple path in the program. The
“node listing” method attempts to overcome these difficulties.

4. NODE LISTING

To gain some motivation for the node listing concept, consider the flow graph in figure 1 below.

Figurel. A **(4,1) climbing graph’".
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On this graph the Hecht-Ullman approach to live analysis could require 5 iterations over the four
nodes. However, if equatiofx) were applied to nodes in order (1,2,3,4,3,2,1) then all the live sets
would be correctly computed and fewer than two iterations through the graph would be required. The
node listing is really a specification of the order in which an equation is to be applied to nodes of a
graph. As it happens, these specifications are often quite short and the algorithms which use them are
correspondingly fast.

We define aasic pathin a flow graphG = (N, E, ny) to be a simple patfv, n, ... ,ng) such that
no shorter simple path from; to n; is contained as a subsequencegwf, n, ... ,n;). In figure 2
below, the simple path (1,2,3,4,5) is not a basic path because it contains the basic path (1,2,4,5).

©

Figure 2. Simple and basic paths

In dealing with data flow problems, we will be concerned with basic paths, because as we shall
see, longer simple paths can add nothing to the data flow information being propagated. For example,
suppose that we are trying to determine if variaklés live in node 1 of figure 2. Suppose also that
there is an exposed use &fin node 5. We wish to know if there is aXi-clear path from node 1 to
node 5. In determining this, we need not consider the path (1,2,3,4,5) because if thisYatlea
then the path (1,2,4,5) must bé-clear also. The basic path restriction is weaker than a simple path
restriction and should allow us to find shorter listings.

We now define anode listingfor a program flow grapli = (V, E, n,) to be a sequence

[ = (nl,ng... 777,m)

of nodes fromN (where nodes may be repeated) such that every basic péatisia subsequence of
l. Thatis, if

(5131,33'2 e ,l’k)
is a basic path i, then there exist indices
.j17j2 s 7jk

such thatj; < ji41,1 <i < k,andz; =n;,,1 <i<k.
THEOREM 1: For any flow graph there exists a node listing of lengtm? wheren = |N|.
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Proof: Supposer,, z», . .. x,, are all the nodes of the graph, then
Il = (x1,29,... ,&p, @1, T2, ... , Ty, T1,Ta,...,T,) With n repetitions of(xy,... ,x,) is certainly
such a listing.

A node listing is said to beninimalif there exists no shorter node listing for the same program
flow graph. We will be concerned with finding minimal or near minimal listings.
Before continuing, let us examine the utility of this concept. Suppose we have a node listing for a
given flow graph7; then the following algorithm computes the live setgiin
ALGORITHM B: Live Analysis via Node Listing.
Input:

1. Aflow graphG = (N, E,ng), |[N| = n.
2. Anode listing = (zy, o, ... ,z,) for G.

3. The setshru(j) andinside(j) for each nodg € N.

Output: The setdive(j)for eachj € N.
Method:

1. Initially, let live(y) = inside(), 1 < j < n.
2. Perform stepd) once for each node; in [ in reverseorder,then halt.

3. Apply equation(x) atz;.

THEOREM 2: Algorithm B terminates and correctly computes the “live” sets.

Proof: Termination is trivial.

To show correctness we must show that ljye¢ correctly computed for each nogle

Let j be an arbitrary node in the graph and supp&ses live on entry toj. Then there must be an
X-clear path inG to a use ofX. Furthermore, there must béasic X -clear path to such a use since
every X -clear path contains a basi¢-clear path (removing nodes cannot cause a path to lose the
X-clear property).

Let (j1, o, - - ,jx) be such a path where= j;. Suppose also that is not live due to a use with-
in j (otherwise it is marked live in step1). The fundamental property of node listings assures us
that (1,72, ... , jk) IS @ sequence df so the nodes of our basic path will be processed in the order:

Jky Jk—15- -+ 5y J25 J1-

When nodej,_; is processedX will be put in live(j,_1) since it is live inj, an X cannot be re-
defined inj,_, (since the path i clear). A chain of similar arguments allows us to conclude that
whenj; = j is processed will be put in live(j;) since it was put in livef,) in the previous step.

Thus if any variable is live on entry to any node, that variable will be put in the live set for that node
during the algorithm. If a variable is not live at arbitrary nggé¢hen it cannot be added to livg(by

the correctness of equatienused inB3 [Ke3].

THEOREM 3: (Complexity of Algorithm B)

Suppose that each nodeGhhas at most: successors for fixell Then the total number of bit-vector
steps required by the algorithm §(k + 1).

Proof: StepB3 requiresk + 1 bit-vector steps and it is executed exadtlytimes wherg/| denotes
the length of the listing.
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The speed of algorithm® depends directly on the length of a node listing for the graph to which it is
applied. The question immediately arises: how short can these listing be? The next few sections deal
with this question.

5. FLow GRAPH REDUCIBILITY

Ullman [U] has defined two transformations which can be performed on a flow gfaphans-
formationT'1 is the removal of the self-looping edge, () from G. Lety be a node having a single
predecessor; then transformatiofi’2 is the replacement of the nodesindy and the edges:(y) by
the single node. The new graph contains the edgex) only if G contained eithery, x) or (x, ).

A flow graph is said to besducibleif repeated application ¢f'1 and72 until neither transformation

is possible yields the trivial flow graph (a single node). Hecht and Ullman [HU1] have shown that the
property of reducibility is independent of the order in whiElh and72 are applied. An important
result, also due to Hecht and Uliman [HUZ2] will be useful later.

DEFINITION: A nodez is said to dominate a nodgif every path fronn, to y containz.

THEOREMA4. A flow graph is reducible if and only if for each cyaleof G there is an entry node of

C which dominates all other nodes dn

Theorem 4 indicates that all loops in a reducible flow graph are single-entry.

It is interesting to note that reducibility is a common property of program. In fact, all “structured”
programs have this property [HUZ2]. It is therefore reasonable to restrict our concern to node listings
for reducible flow graphs.

6. LISTING GRAPHS

We can approach the node listing problem through an equivalent problem through an equivalent
problem, that of constructing an acyclic graph which contains every basic pa&th@ur motivation
comes from the following lemma.
LEMMA 1: LetG = (N, E) be an acyclic flow graph, that is, there does not exist a sequence
(x1,...,xx) of nodes i such thatr; = x, and(x;, z;41) € E,1 < i < k. Then there exists a node
listing of length| N| for G. Furthermore, this node listing contains every path, not merely the basic
paths.
Proof: Apply Knuth’s “topological sort” [Kn] algorithm to the acyclic program flow graph. The result
is a linear listing(yy, . . . ,y,) for G with one copy of each node .
Let (z41,...,2x) be a path inG. Letm; be the index ofz; in the listing forG, i.e.,z; = y,,,. If
(x;,x;+1) IS an edge inF, then bt the order-preserving property of the topological sorc m;. ;.
The sequence of edgés;, x;,1, 1 < i < k therefore impliesn; < my < ... < my;, so the basic path
(x1,...,xy) IS a subsequence of the generated listing. Since the path was chosen arbitrarily, all such
paths are subsequences and the generated listing is a node listing.
The reader should note that this proof is constructive in that it provides an algorithm for producing a
listing (the topological sort) in time proportional to the number of nodes and edges in
We now attempt to generalize the method of Lemmal.
DEFINITION: A directed graphl, = (N, E}) is said to be a listing graph fofr = (N, E, ny) if

1. Lis cycle free

2. There exists a functiap: N;, = N which is onto.
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The nodes of a listing graph may be thought of as “representing” nodés tifat is, we say
y € Ny represents € N if ¢(y) = x. Every node ini is represented by some nodelinhowever,
there may be several representations of any given node. The invefsse of

oL 2N = oML

defines the representationsao€ G; thatis,¢~!(z) is the set of representationsof
DEFINITION Consider the pattP = (x4, ...x;) in G. We say thai is reflected inL = (N, Ey) if
there exist nodeg; . .. , y, such that

1.y € ¢(x;),1 <i<kand

2. (Yi,Yir1) € Ep,1 <i<k,ie.,(y,...,yx)isapathinL.

A listing graphL is said to becompletdor G if every basic path if7 is reflected inL.
LEMMA 2: LetG = (N, E,ny) be a program flow graph and lét = (N, £) be a complete listing
graph forG. Then there exists a node listing of lengi¥y, | for G.
Proof: By Lemma 1, there exists a node listing.) of length |N,| for L. We produce a node
listing [(G) by replacing each nodgin I(L) by ¢(y). Supposézx, ... ,z;) is a basic path itx; let
(y1,...,yx) beits reflection inL. Then(y,, ... ,yx) is a subsequence &6fL) by Lemma 1, so

(0(y1), @), - - ¢(yk)) = (21, .., k)

is a subsequence @fG) by construction.

Since the algorithm for producing a node listing farfrom its complete listing graplt is linear

in the number of nodes and edgedinve may view the problem of constructing a complete listing
graph forG as equivalent to the problem of constructing a node listing-for

The next theorem allows us to restrict our attention to strongly connected subgraphs of a flow graph.
THEOREMDS. LetG(N, E,n) be a program flow graph and I€C; = (N;, E;)|1 < i < m) be the

set of maximal strongly connected components.dff there exists a node listingy for eachC;, then

there exists a node listing of length

| No| + 32724 ]
whereNj is the set of nodes iV which are not in any of the’;.
Proof: Let G’ = (N, E', no) be the acyclic graph derived frotd by replacing each compone@
by a singlec;. Then
N' = NoU (¢;,1 <i<m)
and by Lemma 1, there exists a node listihgf length
| No| +m

for G’. Now replace each nodgin I’ by the listingl;. The length of the resulting listingis

|No| + > |l
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We need to show thdtis a node listing foiG.

Let P = (x1,... ,x%) be a basic path ity.

Case 1: All the nodes aP are in some strongly connected compon@ntThen P must be a subse-
guence of the listing; and hence a subsequencé.of

Case 2: The nodes dt are not wholly contained in any;. Suppose we break down the path into
contiguous part$’;, 1 < j < p, such that

1. eachp; is a path wholly contained in sondg or wholly contained in the acyclic part 6f, and

2. the pathP is formed by concatenating th¢ end to end in order of increasing

Create a new path’ by concatenating the; end to end while transforming ardy; which is wholly
contained inC; to the single node;. The result is a path i’ which must be a subsequence’dby
lemma 1. All that remains is to show that#% is contained irC; then it is a subsequence ©f This
follows immediately if we showP; to be a basic path.

LEMMA 3. Let P = (zy,...,z%) be a basic path in flow graphr, and letC' = (N, E.) be a
subgraph ofG formed by taking a subset of nodes@®@fand all edges among those nodes. Let
P. = (zj,z;41,...,2,) be any contiguous portion of the path which is wholly contained i@
ThenP, is basic inC.

Proof: Suppose not; then there exists a shorter gatiiom z; to z, in C' which is wholly contained
in P.. But if this is so then by replacing. by P. in the pathP, we can get a shorter pattf which is
wholly contained inP, a contradiction of the assumption thais basic.

The proof of the lemma completes the argument that the ligtaigength

|Nol 4+ >0 |l

is a node listing folG and hence the theorem is proved.
7. SHORT NODE LISTINGS

In this section we investigate the usefulness of node listing for data flow analysis by examining
the class of graphs for which node listings for which node listings are “short”, that is bounded in
length byk| N | for some fixedt. Our hope is to show that there exists short listings for many of those
graphs which require large amounts of computation by one of the “standard” algorithms [Kel, HU1].
The restriction we shall make is actually a bit stronger than the one described above.

DEFINITION: A flow graphG = (N, E, ng) is said to be k-listable if there exists a complete listing
graph L = (N, Ep) for G such that

o~ (x)| < k,Vz € N.

With this definition, lemma 1 may be restated (in slightly weaker form) as follows:
LEmMMA 1’: All acyclic flow graphs are 1-listable.
We next turn our consideration to the class of 2-listable graphs.
LEMMA 4: If G = (N, E, ng) is a control flow graph which contains a nodesuch that: is on every
cycle inG, thenG is 2-listable.
Proof: We construct the listing graph = (N, E1) by building two acyclic graph€,, and L; and
taking their union.
Let L, be the acyclic graph constructed fraghby removing every edge leading out of nadand
renaming the nodes in the resultant graph:
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NLO = (y,())!y € N
Ery = ((11,0), (y2,0))|(y1,%2) € N andy; # x

Let L, be the acyclic graph constructed frarby removing the edges leading intaand renaming.

Np, = ((y, D]y € N — () U (2,0)
Ep, = (((y1, 1), (2, D)1, 92) € Eandyy,yo € N — (2)) U (((2,0), (y1,1))(z, 1) € E)

The union of these two graplis= L, U L, is acyclic because both, and L, are acyclic and there
are no edges of the forfiy,, 1), (y2,0)) in L.
Define¢ : N, = N as follows:

?((y,0)) = o((y, 1)) = y,Vy € N.

We must show thak is a complete listing graph fa¥. Let P = (v, ... ,,yx) be a basic path itv.
If P does not pass throughthen it must be included in both, andL,. SupposeP containsz. Let
P, be the part op up to and including: and P, be the part aftex. By lemma 3F, and P, are both
basic, saF, is reflected inL, while P is reflected inl;. The edge betweenand its successory in
P is represented i, by the edgé(z,0), (y1,1)) which was included il by construction. Thus
P is reflected inL and L is a complete listing graph far.
There are two representatiof(g, 0), and(y, 1)) in L of every node inG exceptz which has but
one. Thereforé& is 2-listable.
Note that we have used a subtle fact which is implicit in our definition of node listing, that is, the
path(z, x), if it exists inG, is not basic.This is because self-looping blocks can be completely
analyzed by local methods and are therefore considered basic blocks in this analysis.
It has been shown [Kel,U] that the class of “seashell graphs”, whose form is depicted in figure 3
below, requireD(|N|?) bit vector steps to analyze using the interval method for live analysis.

Figure 3. The seashdll graph with 4 nodes.

However, the node listings for these graphs are of lepgth — 1 by lemma 4, so the node listing
approach will be clearly superior on this class of graphs (R€.V])).
We next turn our attention to a somewhat larger class of graphs which are 2-listable. We shall define
this class by defining “acceptable” graph-transformations.

LetG = (N, E, ny) be a control flow graph. Furthermore, suppose there exists a furiction



Node Listings Applied to Data Flow Analysis 157

t:N=(0,1)

which defines the “type” of a node: i{x) = 1, we say that is expandablgotherwisez is non-
expandablda basic block). By definitiort,(ng) = 0.

DEFINITION: An interval transformation o4 = (N, E, ny, t) is one which produces a graghl =
(N', E',ng,t") by replacing any expandable nodein G by a regionR = (Ng, Er, hg) with the
following restrictions

1. All predecessors af in G become predecessors/of in G'.
2. Ris connected
3. Every cycle inR containshy

4. The region heady is non-expandable

In applying an interval transformation, edges of the fammz) in G are replaced by edges
(y, hr) In G" while each edgér, y) may be replaced by several eddeg, v), zr € Ng. The name
“interval transformation” arises because the regifirare Cocke-Allen intervals [AC1].
DEFINITION: An interval transformation is said to be single-exit if all the exits from the expanded
region come from the same node, i.e., there exists a agde R such that every edge of the form
(x,y) in G is replaced by the edger, y) in G'.
Figure 4 depicts a single-exit interval transformation. The non-expandable nodes are drawn as rect-
angles.

non-expandeable head

=— exit

Figure 4. A single—exit interval transformation

DEFINITION: An out-graph for a single entry strongly connected region is a subgraph of
which contains

1. every basic path from a node Mz to an exit from/Vg,

2. every basic path from a node iz — (hg) to a latching node (a predecessor/of in Ny), and
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3. for each properly contained, single-entry, strongly-connected subregjien (Ng, Es, hg),
every basic path from a node ¥ig — (hg) to a latching node of.

An in-graph forR is a subgraph which contains every basic path from the heddtofanother
node ofR.
The following theorem is an adaptation of a result by Hecht and Uliman [HUS3].

THEOREMG. If G = (N, E, ng) is a reducible flow graph then there exists an acyclic in-graph
for G which consists of all the forward branchesah
Proof: Thedagof a reducible flow graph is the subgraph formed by eliminating fé@those edges
removed by an application @f1 during the reduction ofs. Hecht and Ullman [HU3] have shown
that the dag of a reducible flow graph is acyclic and unique. Furthermore, it contains every cycle-free
path from the header @t to a node withinR, because any “backward branch” from a node on such a
path must by Theorem 4 branch to a node which is already on the path. Hence the dag contains every
basic path to a node withiR.
DEFINITION: it A 2n-acceptance transformation is a single-exit interval transformation such that the
expanded regions has an acyclic out-graph.
The transformation in figure 4 above is a 2n-acceptable, while the region shown in figure 5 can never
be the target of a 2n-acceptable transformation.

¢

1

or
OO

DN ¢
¢

N

An Unacceptable Region Minimal Out-graph \b

Figure 5. An unacceptabletar get region.

LEMMA 5. If G = (N, E, ny) is a reducible flow graph an@’ = (N’, E’, n,) is produced from
G by an interval transformation, the@’ is also reducible.
Proof: Hecht and Ullman [HU2] have shown that every interval is reducible. Therefore, we can
reduce the expanded regidhto a single node by the application of a sequencébandT2 trans-
formations. The result is the original graphwhich is reducible by another sequence of such trans-
formations. If these two sequences are applied in the order described, thejraifiibe reduced to
a single node.
LEMMA 6.Let R = (Ng, Eg, hr) be a single-entry strongly connected region with an acyclic out-
graph outR). If R = (Ng/, Er/, hg) is formed fromR by applying a 2n-acceptable transformation
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to any node inR excepthr, thenR’ has an acyclic out-graph.

Proof: Let out(R’) be formed by inserting the out-graph for the expanding regior- (N., E., h.)
in place of the expanded node and replacing branches into and out of the expanded node by branches
to the header oR?, and from the exit ofR, respectively. Clearly ouff’) is acyclic so we need only
show that it is a valid out-graph fat'.

1. Let P be a basic path from a node withitf to an exit. If P contains no nodes ok, then P
must be in outR) and therefore in oul{’). Assume that® does not contain nodes &f.. The
nodes withinR, must be contiguous i because of the single-entry single-exit restriction on
R.; that is, no basic path to an exit &f can pass through the exit node®f twice. Therefore
we may replace the nodes Bf in P by the single-expanded node frafh The resulting path
Py is basic inR (since if it were notP would be not basic i) and is contained in oul{).
The portion of the path withii, is basic inR. by lemma 3 and hence is contained in @ty
Therefore the whole path is contained in @)(by construction.

2. Let P be a basic path in a subregiéh= (Ng, Es, hs) of R’ from a node other than the head
hs to a latching node fof.

(a) Supposes does not contain the expanded node. Tliers in out(R) and therefore in
Out(R).
(b) Suppose& is the expanded regioR.. ThenP is in out(R.) and hence in ouff’).

(c) Suppose contains the expanded node. On any path thrakgto a latching node of
the nodes of?, must be contiguous by the same argument as in cat®ve. Therefore
the pathF, in which the nodes fronR, are replaced by the single expanded node is in
out(R) and hence” is in out(R’) by lemma 3 and the construction.

Note that casé3 includes the special cag¢ = S, so P may be any basic path to a latching
node forR'.

THEOREM 7: LetG = (N, E, ny) be a control flow graph formed by beginning with a single
expandable node and repeatedly applying 2n-acceptable transformations to produce a sequence of
graphs(Gy, Gy, . .. , G, G) which ends inG. ThenG is 2-listable.

Proof: Let L, be the acyclic out-graph fo@ (guaranteed by lemma 6) in which each naodes
renamedy, 0) as in the proof of lemma 4. Sineg is reducible by theorem 6 there exists an acyclic
in-graph forG as well. LetL; be this graph with each noderename(y, 1). FormL = Ly U L,. For
each nodéz,0) in Ly which is a latching node for a header (of some subregion afy) insert the
branch((z, 0), (h.,0)) in N.. The resulting graph is acyclic because bbthand L, are acyclic and
branches between them go only one way. We need only show.tisad complete listing graph for
(G. SupposeP is a basic path id7. There are two case to consider

1. The pathP contains no branch from a latching node to its region head. In thisR@smsists
entirely of forward branches [HU3] and must be containedin

2. The pathP contains at least one branch from a latching node to its region heady g be
the last such branch iR. Hecht and Uliman [HU3] have shown that the portiBnof P up
to and includingy must be entirely contained in the region headedfpyotherwise the path
P would be a cycle through,). Hence,F, is contained in the out-graph &, (by lemma 6)
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and in the out-graph af (also by lemma 6). The portioR; of P beginning withh, consists
entirely of forward branches and is therefore reflectefl;infinally, the edgé(y, 0), (ho, 1)) is
in L by construction so the entire pathis reflected inL.

But there are at most two representations of each nodeso

[p(x)] <2

and the theorem is proved.

Consider the family of “spiral graphs” defined by transformations of the form shown in figure
6. It can be easily seen that both generating transformations are 2n-acceptable. Therefore the spiral

Generating Transformations

Figure 6. Spiral Graphs

graphs are 2-listable. This family is important because it has been shown that live analysis on spiral
graphs require® (| N?|) bit-vector steps when either of the “standard” algorithms is applied [Ke3].

A more interesting case is presented by the transformations of Bohm and Jacopini [BJ] (figure 7)
which are often taken as standard for “structured” programming [DDHIRQLLARY: Any flow

graph formed from a single node by repeated application of the transformations of Bohm and Jacopini
is 2-listable.

Proof: Clearly transformations 2 through 5 are 2n-acceptable. Only transformation 1 is in question
because it does not have a single block as its head. However, transformation 1 can be eliminated if
we include the four 2n-acceptable transformations shown in figure 8.

The result now follows immediately from theorem 7.
Although it is not our intention to exhaustively investigate the 3-listable graphs, the following theo-
rem should give some indication of the addition power obtained by allowing 3 copies of any node.
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3) Conditional expansion 4) Repeat-while expansion

Figure 7. Thetransfor mations of Bohm and Jacopini.

THEOREMS8: LetGG = (N, E, ng) be a control flow graph generated from a single node by repeated
application of single-exit interval transformations in which the out-graph of the expanded region can
be made acyclic by duplicating the head of that region once. Than3-listable.

Proof: The same construction as in the proof of theorem 7 will work if modified so that the branches
into the out-graph of the expanded region go to both copies of the head. The proof is then straight-
forward and follows the proof of theorem 7. The number of representations of any node is bounded
by 3 since we only make a third copy of a non-expandable node.

Theorem 8 allows us to consider the “double-exit loop” or “loop conditional”(figure 9) in which
a special condition inside the loop causes a branch to a piece of code for exceptional processing
before returning to the main execution stream.

The need for such generalized loop exits in goto-less programming has been discussed in the
literature [Kn2,Z]. It is therefore gratifying that the addition of such a control structure will not
increase the complexity of data flow analysis unreasonably.

8. SUMMARY AND CONCLUSIONS

We have defined the concept of a “node listing” and examined its usefulness in the solution of
global data-flow analysis problems. The class of flow graphs with “short” listings is large and in-
clude most of those flow graphs which would be generated by structured programming and many
flow graphs on which the standard data-flow algorithms do quite poorly.

Recently, Aho and Ullman [AU2] have devised an algorithm which, given a reducible flow graph
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Figure 8. Eliminating transformation 1.

o

G = (N, E,ng), will construct a node listing fofy of length proportional td/N|log |N| in time
proportional to|N|log|N|. Thus the previously open question of whether or not there exists an
O(|N|log |N|) algorithm for live analysis has been resolved via the node listing approach.

The node listing method also may have implications in another important area of computer sci-
ence. Recently, much attention has been centered around the question “What makes a program well-
structured ?” Many authors have attempted to define which control structures should be avoided if a
program is to be easily read and understood by another person, but no real quantitative measures have
been put on this quality of “understandability”. However, the length of a program’s node listing is
in one sense a measure of its understandability to the compiler. We have seen here that the compiler
and the human agree that certain control structures such as those of Bohm and Jacopini are simple. It
does not, therefore, seem unreasonable to view the complexity of a control structure in terms of the
node listing expansion that it may cause.
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Node Listings for Reducible Flow Graphs
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K. Kennedy recently conjectured that for everynode reducible flow graph, there is a sequence of nodes
(with repetitions) of lengthO(n log n) such that all acyclic paths are subsequences thereof. Such a sequence
would, if it could be found easily, enable one to do various kinds of global data flow analyses quickly. We show
that for all reducible flow graphs such a sequence does exist, even if the number of edges is much larger than
n. If the number of edges i9(n), the node listing can be found M(n log n) time.

1. INTRODUCTION

Much of the research in global data flow analysis has centered around a class of reducible flow graphs,
first defined by Allen [2] and shown empirically by Knuth [3] to include virtually all the flow graphs
arising from naturally occurring FORTRAN programs. One general approach to solving global data
flow problems is the technique of iteratively converging on the maximum fixed point of a set of
equations. Hecht and Uliman [4] showed that for the usual equations on bit vectors, e.g., [5-8],
convergence could be obtained when one had visited the nodes in such a way that every cycle-free
path was a subsequence of the nodes actually visited.

An ordering of nodes based on depth-first search was used in [4] to show that convergence will be
very rapid on reducible flow graphs, assuming the evidence of [3] that programs are not only reducible
but of small loop nesting depth. The same technique of propagating data along acyclic paths can be
applied to Kildall's [9] lattice-theoretic generalization of the bit vector data flow algorithms, at least
in a restricted subcase [10].

Kennedy [1] suggested that for those data flow problems for which propagation along acyclic paths
suffices, a solution could be expedited by finding for each flow grapbkiran@ node listing an
ordering of the nodes of a flow graph which includes every acyclic path as a subsequence. For
example, the flow graph of Fig. 1 has a node listirdgba, while the method of [4] would require
visiting nodess, b, andc in that order, four times.

Kennedy [1] also mentioned the notion ofv@ak node listingan ordering of the nodes such that
every acyclic pathP is either a subsequence of the listing or there is another acyclic path which is a
proper subsequence 6fand has the same source and destination. Clearly every strong node listing
is a weak node listing, so a construction that yields short strong node listings also yields short weak
node listings. We consider weak node listings briefly when we mention lower bounds.

In [1] Kennedy showed that for a subclass of the reducible graphs, essentially those produced from
constructed fronbegin - -- end, while --- do, andif --- then --- elsestatements, a node listing
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FiG. 1. Example Flow Graph

of length 2n exists for any sucm node grapl?. Thus, for these graphs, which reflect structured
programs that do not useak statements, there exists a linear algorithm to do the kinds of data flow
analyses covered by [4, FOKennedy also posed the question of how long a node listing is necessary
for an arbitrary reducible flow graph, and conjectuéa log n) is sufficient*. In this paper we show

that this conjecture is correct even if the number of edges is much greater. tHahe number of
edges ig)(n), then the node listing can be founddrn logn) time.

2. BAsIC DEFINITIONS

A (directed graphis a pair(NV, F) whereN is a set ofnodesand £ C N x N is a set ofedges

If (ny1,n9) isin E, we writen; — ng, and sayn, is predecessopof n, andn, a successoof n;.
We sayn; is thetail andn, the headof the edgen; — n,. A pathin G is a sequence of nodes
ni, N, ... ,ng, k > 1, such thaty; — n;4q forall 7,1 <i < k. If n; = n; for somei # j, the path
has acycle Otherwise it isacyclic

A flow graphis a tripleG = (N, E,ng), where(N, E) is a graphpn, in N is theinitial node, and
there is a path from, to each node inV. In a flow graph, node; dominatesoden, if every path
from the initial node ta, passes through,. For example, in Fig. 1, assumings the initial node,
we haven dominating all nodes; dominating both itself and, andc dominating only itself.

Reducible flow graphs were defined originally in [2] in terms of “intervals.” The characterization

we shall find most useful here is that of [14], in terms of the following transformafipred7;, on
flow graphs.

T,: Remove doop, i.e., an edge. — n for some node.

T,: Suppose: has a unique predecessor andn is not the initial node. Then replace andn
by a new node, say. Forq # m, n, there is an edge — p if there was previously an edge— m.
Forr # m,n, there is an edge — r if there was previously an edge — r or n — r or both.
There is an edge — p if previously there was an edge — m or n — m or both. Under this
transformation, we say that consumes.

2This same class of graphs was considered by Graham and Wegman independently, and another completely different
but equally efficient approach was discovered. Geschke also demonstrated that certain data flow problems could be solved
easily for this class, and his algorithm can be shown linear

3By “linear,” we mean of linear time complexity in the number of nodes of the flow graph. Bit vector operations, or
lattice meet and function applications in the more general framework of, are deemed to take one “time unit.”

“For arbitrary graphs, the problem is equivalent to finding a sequence of Higits . , n such that every permutation
of 1,2,... ,nis a subsequence. Newey shows a sequence of length proportiertabtoecessary and sufficient here.
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A flow graph isreducibleif it can be transformed into a single node by repeated applicatiohs of
andTs.

ExAamMPLE 1. The flow graph of Fig. 1 is reduced by the sequence shown in Fig. 2.

)
)

FIG. 2. Reduction of a reducible flow graph.

As a flow graph is reduced, each node in every derived graptesentsa set of nodes and edges
of the original graph, and each edgpresenta set of edges of the original. Initially, each node and
edge represents itself. If we apgly to eliminate edge. — n, then afterwards represents what it
and the edge — n previously represented. T, is applied, withm consumingn to form p, thenp
represents what, n and the edgen — n previously represented. An edge— p represents what
g — m represented, and edge— r represents what: — r andn — r represented. Edge — p
represents whatr — m andn — m represented.

EXAMPLE 2. After the first step of Fig. 2, nodérepresent$, ¢ and the edgé — c¢. Edged — d
represents — b. At the penultimate step,represents, b, c and the edges — ¢, ¢ — b anda — b.
At the end e represents all nodes and edges, of course.

A region with headeh of a flow graphz = (N, £, ng) is a set of noded/ and edges.’ C N’ x N’,
such thatifm — nisin E, then
() if nisin N’ andn # h, thenm isin N’, and
(i) if m andn and inN’ andn # h, thenm — nisin E’.

That is, the only way a region can be entered from outside is through the headeF’, iactldes
all those edges iV’ x N’, with the possible exception of some which enter the header from inside
the region.

ExampPLE 3. In the flow graph of Fig. 1N’ = {b,c} is a region ifE’ is eitherb — c alone or
{b—c,c—b}.0O

3. BASIC RESULTS

The following characterization of reducible flow graphs is taken from [15].

LEMMA 1. All and only reducible flow graphs can have their edges partitioned uniquely into two
sets the forward edges, and back edges , having the following properties.
(1) The flow graph with the back edges deleted forms a flow graph with no cycles, and if any
back edge is added, a cycle results.
(2) For each back edge — m, m dominatesa.
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Using Lemma 1, it is possible to show the following result, taken from [4].

LEMMA 2. Let P = nq,no,... ,n; be an acyclic path in a reducible flow graph, andgt_, —
Miyy Mis—1 — Ny, -+ ;N1 — N, b€ the sequence of back edges aléhgn that order. Them;,
dominatesy;, , forall j,1 < j <k. O

Since dominance is easily seen to be transitive (see [6], for example), Lemma 2 implies that each
head of a back edge along an acyclic path dominates all the previous heads of back edges.

We now prove a lemma which will be central to the development of our theorem.

LEMMA 3. LetR = (N', E') be a region with headeéi of flow graphG = (N, E, n,). Let P be an
acyclic path inG which begins at some node outsiBe ThenP traverses no back edge &f

Proof. SupposeP has in sequence two distinct nodesn of R, wheren — m is a back edge. By
definition of region,P reaches: beforen, or h is n. SinceG is a flow graph, there is a path from
ng to h, and we can assume without loss of generality thas acyclic. Thus, no node at except
h appears o) by definition of region again. Thef followed by a portion ofP from A to n forms
a path fromng to n that avoidsm, unlessm = h. In the first case, we contradict Lemma 1 which
says thain dominates:. In the second case appears twice o, sinceh = m = n is ruled out by
assumption]

It follows from Lemma 1 that there is an ordering of the nodes of a reducible flow graph such that
any path which uses no back edges is a subsequence thereof. In particular, any topological sort of
the flow graph with back edges removed suffices. Let us call such an orcgeyetc It follows
from Lemma 3 that if a path enters a regiBrthrough its header, it mush follow a subsequence of an
acyclic ordering ofR? until it leavesR.

Our final preliminary result concermgarsesof reducible flow graphs. As we reduce a reducible
flow graph byT; andT;, the nodes represent regions at all times. Reductidf loes not increase
the number of nodes in the region represented by the node to Whishapplied, although it does
add some edges. Thus, oy builds regions with progressively larger number of nodes. We may
therefore state the following lemma, whose proof is found in [16].

LEMMA 4. Let R = (N, E’) be a region of some flow gragh represented by some node during
the reduction of7, with N’ not a singleton. ThetV’ can be partitioned into two nonempty disjoint
sets of node$V; and N,, such that( Ny, E;) and (N,, E,) are regions, wherd?; = E' N Ny x Ny
andEQ =FE'N Ny x Noy. O

Note that there may be edges/r that are in neitheF; nor E,. These edges have for heads the
header of Vi, E1) or (N, E») and have tails in the other regions.

4. SPIRAL GRAPHS

We now introduce a special kind of reducible flow graph, called spiral graph, for which we give two
methods of constructing a node listing. The next section shows that any given flow graph can be
reduced to a spiral graph; the node listing of the spiral graph can be used to help construct a node
listing for the given graph.

The class ospiral flow graphs is defined recursively as follows.

1. A node with no edge is a spiral flow graph.

2. If G = (N, E,ng) is a spiral graph and is a new node, then
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(@ (Nu{n}, EUE"U{n — ng},ng) is a spiral graph, wher&’ is the set of edges from
nodes inN to n, and

(b) (NU{n}, EUE U{n — ng},n)is aspiral graph, wherg’ is an in (a).

3. Nothing else is a spiral graph.

These two constructions are illustrated in Fig. 3. The primary distinction between these two con-
structions is whethet or n is the header of the constructed graph.

LN ":

FiG. 3. Construction of spiral graphs.

Note that each spiral graph has a specific order in which the nodes were added during its construc-
tion. Except for edges — ny added in case 2, all edges “spiral outwards,” that is their heads were
added after their tails and therefore the heads are further from the center.

If » is added to a spiral graph by rule (2a), call itrailing node, and if added by rules (1) or
(2b), call it aleadingnode. Note that the initial node of a spiral graph is always a leading node.
The following lemma summarizes some results that are easily proved by induction on the number of
nodes in a spiral graph.

LEMMA 5.(i) Every spiral graph is reducible; all spiral graphs from which it is formed are regions.
(i) Edges added using rule (2a) except— ng, and the edge — n, added by rule (2b) are
forward; the other edges are back edges.
(iif) Each leading node dominates all previously added nodes.

Proof. (i) By the inductive hypothesis; of Fig. 3(a) or (b) is reducible. Reducing it to a single
node results in a pair of nodes with edges between them. This resulting graph is clearly reducible.
(i) An easy induction shows that the edges designated as forward form an acyclic graph, and
that no other edge can be added without forming a cycle . By Lemma 1 and part (i), this selection of
forward and backward edges is unique.
(iif) By part (ii), back edges enter each leading node from all previously added nodes. The
result then follows from Lemma 1l

We now need a recursive method of constructing node listings for spiral graphs.

LEMMA 6. LetG be a spiral graph formed from nodes, n., ... ,n, added in that order. Let’
be the spiral graph consisting of nodes n., ... ,n;_; and all edges between themGh LetG" be
the (spiral) graph formed from;, n;.1,... ,n, and all edges between them. L&tand B be node
listings forG’ andG”, respectively, and let and B respectively denote the nodeg#@fandG” in an
acyclic order. TheMBBAB is a node listing foiG.
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Proof. Suppose an acyclic pathbegins inG’, and then enter§”. If P follows more than one back
edge upon or after leaving’, it can never return t6”. In proof, Lemma 5(2) tells us that every back
edge enters a leading node. By Lemma 2, the second back edge enters a node which dominates the
headh of the previous back edge. By Lemma 5(3) appliedtohe header of’ cannot be reached
without passing through again. Thus, ifP leavesG’ and returns, it does so after following exactly
one back edge. The portion #funtil the return ta’ is thus a subsequence 43 B. Once inG’ for
the second timeP may not follow any back edge by Lemma 3. ThRss a subsequence ofBBA
until it again leavess’. In that event, it cannot re-entét at all, since to do so it would have to pass
through two leading nodes which dominate the heade&r’'pfwhich we just argued as impossible.
ThusP is a subsequence efBBAB.

The case in whichP begins inG” rather thanG’, or whereP begins inG’ but never returns are
easier to handle than the case above, so we omit further défails.

We extend Lemma 6 to apply to the partition of a spiral graph into three parts, the middle part being
a single node.

LEMMA 7. LetG be as in Lemma 6 wity’ formed as before from,, n,, ... ,n;_; andG"” formed
from n;1,n510,... ,n,. Let A and B be node listings foi’ and G”; let A and B be acyclic
orderings of these graphs. ThetBBAn,; BBAB is a node listing foiG.

Proof. Straightforward generalization of Lemmal8.

We now need to show not only that each spiral graph has a short node listing, but also that given
an arbitrary weighting on the nodes, there is a node listing in which the node of heaviest weight
appear the fewest times. The motivation for considering weights is that arbitrary reducible graph will
be reduced to subgraphs of spiral graphs. In so doing, the nodes of the spiral graph will represent
regions of varying sizes and the weight of a node in the spiral graph will reflect the size of the region
it represents.

In what follows we need certain constants which we assign as follaws: 2/ log% Sandb =
(3)'/%. Note thatalog b = 1.

LEMMA 8. Let G be a spiral graph formed from nodes,n,,... ,n, in that order. Letn;
have weightw;, and letW = Zle w;. ThenG has a node listing in which; appears at most
alog (bW /w;) times, forl <i < k.

Proof. If k£ = 1, the result is trivial. Suppose > 1 and assume the lemma holds for spiral graphs
of fewer thank nodes. It is easy to see that one of the following two cases must occur.

(1) For somej, 1 < j < k, we havel TV < ™77 w; < 2, or

(2) For somej, we findw; > W, Y"1 w; < 2W andYF ., w; < 2W.
In each of these cases we partitiGrand apply one of Lemmas 6 or 7.

Casel. %W < 2‘3;11 w; < %W. We partitionG as in Lemma 6, letting=’ consist of nodes
ni,ma, ... ,nj—1 andG” be the remaining nodes. L&' = 7"/ w; andW” = 37 . w;. By the
inductive hypothesis applied @’ and G” there is a node listingl for G’ in which n; appears at
mosta log (bW’ /w;) times forl < i < j. Also, there is a node listing fa&” in which n; appears
at mosta log (bW /w;) times forj < ¢ < k. By Lemma 6 there is a node listing féf in which for
j <i <k, n; appears at mot+ alog (bW" /w;) = alog(2**bW" /w;) times. SinceV’” < 2W,
and %22/“ = 1, n; appears at mostlog (bW /w;) times. A similar argument prevails in the case

SAll logarithms are to the base 2
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1<i<j.
Case2. w; > ;W, ¥/ jwi < ;W and) [, w; < ;W. PartitionG into &, n; and G”
as in Lemma 7, lettings" consist ofn, ny, ... ,n;—; andG” consist ofn; 1, n,49,... ,n%. By

the inductive hypothesis and the fact t@tg;l w; and Zf:jH w; are both less thahl’/3, there
are node listingsd and B for G’ and G”, such thatr; appears at mostlog (bW /3w;) times for

i # j. By Lemma 7, there is a node listing f6rin which n, appears at mostt+ alog (bW /3w;) =
alog (2*/°bW/3w;) times. Sincel2*/* = 2, we have our result in this case. Finally, there in one
occurrence of,; in the node listing folG. Sincea log (bW /w;) > alogb = 1, the proof is complete.

O

5. THE MAIN RESULT

We shall now show how to construct &rn log n) length node listing for any reducible flow graph.
Basically the method is to partition each reducible flow graph into pieces, none of which has more
than two-thirds the whole. The pieces are themselves regions, and node listings for them can be found
recursively. Then we form a subgraph of a spiral graph by reducing each of these iRgoasingle
nodeng. The desired node listing is found by taking a node listing for the spiral graph, substituting
an acyclic ordering for each regiar represented by noder, and preceding the result by a node
listing for each region in the partition.

LEMMA 9. LetG = (N, E,ng) be a reducible flow graph witk > 1 nodes. Then we can find

a set of disjoint region$?;, Rs, . .. , R,,, whose union includes all nodes@f having the following
properties:
1. none ofRy, R,, ... , R, has more thatk nodes ;
2. there is a sequence of regiofig S, . .. , S, such that:
(@) S1 =Ry,
(b) fori > 1,.5; consists of5;,_; and R; with one the predecessor of the other,
(c) S, isG.

3. The graph formed fror¥ by reducing each oR;, Rs, ... , R,, to a single node with no loops
is a spiral graph with zero or more edges removed.

Proof. By Lemma 4, every region of more than one node is the union of two regions, one of which
is the predecessor of the other. Using an argument of [17], we observeThigtainy region of more
thanZk nodes, then either:

1. itis composed of two nonempty regions, one of which has moregihaodes, or

2. itis composed of two regions the larger of which has betv%e&eand%k; nodes.

Thus, the algorithm in Fig. 4 will generate the sequence of g&lss R..), (Sm—1, Rm-1)s - - -,
(S1, Ry). This construction proves parts (1) and (2) of the lemma.

For part (3), we prove by induction arthat, after reduction$; is a spiral graph with some edges
possibly missing. The basis= 1 is trivial. For the induction, ifR; is the predecessor &f_; when
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begin
T—G;
while 7' has more thag . nodesdo
begin
let T be composed of regior’§ and75,
with 77 having no fewer nodes thah ;
print (T, 1) ;
T 1T,
end;
print (7", T")
end

FiG. 4. Computing the sequences of regions.

S, is formed, then the result is immediate from construction (2b) in the definition of spiral graph. If
S;_1 is the predecessor @t;, then construction (2a) sufficesl

ExAMPLE 4. Consider the flow graph in Fig. 5.

The graph is composed of regiofis, 2} and{3,4, ... ,10}. The latter has more thétx 10 nodes,
so we print the pai(s,,, R,,) = ({1,2,...,10},{1,2}). Then we work on{3,4,...,10}, which
can be partitioned in one of two ways, either by separating @utl 0. Supposing the latter, we have
(Sm—1, Rm—1) = ({3,4,...,10},{10}). Then working or{3,4, ... ,9} we separate it int¢3} and
{4,5,...,9}. The former isR,, », and the latter has no more th§it>< 10 nodes, so it is botly,, 3
andR,,_3. The sequences of regions are thus found to be:

1 {4,5,...,9} {4,5,...,9}
2 {3 {3,4,...,9}
3 {10} {3,4,...,10}
4 {1,2) {1,2,...,10}. 0
LEMMA 10. LetG be a reducible flow grqph partitioned int®,, R,, ..., R,, asin Lemma 9. Let

R; have node listing!; and acyclic ordering4; for 1 < i < m. LetH be the spiral graph constructed
from G by reducing theR’s to single nodes, then possibly adding some edges to make a spiral graph.
Let B be a node listing forf. LetC' be constructed fron®? by replacing inB each occurrence of
noden; of H representingR; by the acyclic orderingl;. ThenA4; A, - - - A,,C'is a node listing foiG.

Proof. Let P be an acyclic path idz. We can writeP as P, P,, where P, consists of the prefix
of P until just beforeP leaves one oR1,Rs,. . .,R,, in which it began. Surely?, is a subsequence
of AjAy--- A,,. Consider the patly in H consisting of those nodes &f representing the regions
R{,R,,...,R,, through whichP, travels inG. Q must be acyclic els&, enters the same region twice.
Since regions can only be entered at their headers, the acyclicn€ssasfd hence of’, would be
contradicted. Thig) is a subsequence &f, and by Lemma 3P is a subsequence 6f. ThusP is a
subsequence of, A, --- A,,C. O

THEOREM 1. Every reducible flow graph of nodes has a node listing of length no more than
k + cklog k, wherec = 3/log 3 = 5.13.
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S (D (2

FIG. 5. Reducible Flow Graph

Proof. We proceed by induction o The basis: = 1 is immediate, so suppose the result for flow
graphs of fewer thak nodes. By Lemma 10, we need only bound from above the length of the node
listing A1 As - - - A,,C described in that lemma. Let; be the number of nodes in regidt). Then by
the inductive hypothesis}; has a node listing of length at mast + cw; log w;.

By Lemma 8, the spiral grapH formed fromG as in Lemma 10 has a node listiggin which the
node representing; appears no more tharlog (bk/w;) times. Thus the node listing' has length
atmost) ", aw; log (bk/w;). HenceA; A, - - - A,,C has length bounded above by

k
Z(wi + cw; log w; + aw; log (bk /w;))

i=1
:zm: ic—awzlogwﬁ—aszlogbk
i=1 =1 i=1

Z ¢ — a)w;logw; + aklogk + aklogb (1)

Sincew; < %k for all 7, by Lemma 9, we have

m

& 2
Z(c —a)w; logw; < Z(c —a)w;log =k = (¢ — a)(klogk — klog §) (2)
— 3 2

i=1

Substituting (2) into (1) yields + ck log k — cklog 3 + aklog 3 + ak log b. It suffices to observe that
—clog 2 + alog 2 + alogh = -3+ 2+ 1 = 0 by our choice of:, b andc. O
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In order for the method proposed in [1] to be feasible, it is necessary not only that short node listings
exist, but that they can be easily constructed, else we might spend more time constructing the node
listing than using it to drive an “efficient” data flow analysis algorithm. Fortunately, the construction
we have proposed can be carried out efficiently if the number of edges in not too large.

THEOREM 2. A node listing for a reducible flow graph efnodes with at most» edge$ can be
constructed ir0(nlog n) time.

Proof. It is straightforward to check that the constructions in Lemmas 6, 7, 8, and 10 and Theorem
1 require time proportional to the length of the node listing generated. The only possible problem
concerns Lemma 9, where we proved the existence of sequence of régigns. . . ,R,, without
showing how they could be found effectively. However, in [18] a method of parsing reducible flow
graphs in less thabd(n logn) time is presented, so the actual constructio®pfRs,. . . ,R,, poses no
problem.]

COROLLARY. There is anO(nlogn) bit vector step algorithm to compute live variables for flow
graphs in which no node is the tail of more than two edges

Proof. Visit each node in thé(nlogn) length node listing, performing at most three bit vector
steps per node, as proposed in [1].

6. LOWERBOUNDS ONTHE LENGTHS OFNODE LISTINGS

Recently, Markowsky and Tarjan [19] have shown that there exist reducible flow graphs motles
all of in-degree and out-degree two or less for which no weak node listing is shortén fRatog n.
Thus, our construction is optimal to within a constant, for both strong and weak node listings.

7. EXTENSIONS

We might wish to apply the node listing technique to (1) finding live variables in flow graphswith
edges, where > n, the number of nodes, or to (2) “forward” problems such as “reaching definitions”
or “available expressions” [e.g., 5, 6, 16], whether or ®ot> n. In each case, the work involved

in visiting a node is proportional to the number of edges in (for “forward” problems) or out (for
“backward” problems like live variables) of the node. We can extend Theorems 1 and 2 to consider
weightsof nodes, where weight can be defined as the in or out degree.

By the same method as we have used we can show tl@tritog n + ¢) time we can construct
a node listing for a reducible flow graph withnodes and > n — 1 edges, such that the sum of
the weights of the nodes in the listing is at méstlog W, wherelV is the sum of the weights of
the nodes in the graph. Lettindf = e then yields arO(elog ¢) algorithm for all known bit vector
oriented data flow analysis problems on reducible flow graphs. This result is comparable to the time
bound for such problems obtained in [11,16].

A short length for weak node listings would have practical significance, since for certain problems
such as “reaching definitions” or “live variable” (but not for “available expressions”) a weak node
listing is sufficient to perform a global flow analysis.

Fredrickson [20] recently reported that the constamt Theorem 1 can be reduced 2d)1 by a
finer treatment of Lemmas 6 and 7 and a further refinement of the parameters in Lemmas 8 and 9.

5This restriction on edges follows from the usual assumption that branches are two-way. Thus no flow graph resulting
from a program can have more than twice as many edges as nodes.
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Appendix B- Papers Written During the
Project

In this appendix, we enumerate the following papers that were written during the project in order to
document the results that we have obtained.

[0 Some Interesting Results About Applications of Graphs in Compilers

[0 Parallel Processing on Linux with PVM and MPI
[0 Software for Parallel Processing
[0 Parallel Programming on PARAM

[0 Graphical User Interface using Qt


















Appendix C- PVM and MPI Function List

In this appendix we list the PVM and MPI functions used in the brute force programs implemented
on thePARAM 1000Gupercomputer. These serve as a representative of the type of services provided
by PVM and MPI. More information about PVM functions can be found in [1] and that about MPI

can be found in [25].

PVM Function Table

h the

Function | Description

pvm_send() Send a message in the active send buffer to the process wit
given task ID and with the given tag.

pvm_recv() Receive a message into the active receive buffer from the g

process and having the given tag.

iven

pvm_initsend()

Initialize the active send buffer to send data.

pvm_pkint() Pack an array of integers into the send buffer. Similar functions
for other data types too.

pvm_upkint() Unpack the data from the active receive buffer into the user byffer.

pvm_mcast() Multicast (i.e. broadcast to many but not all) a message in|the
active send buffer.

MPI Function Table

Function | Description

MPI1_Send() Blocking send. Sends a message with the given tag to the speci-
fied process in the given communicator.

MPI_Recv() Blocking receive. Receives a message with the given tag from the
specified process in the given communicator.

MPI_Bcast() Broadcasts a message to all the processes in the given communi-
cator.

MPI_Probe() Probes or a message with the given tag from the given process.

MPI_Comm_rank()

Gets the rank of the process in the given communicator .

Apart from these functions, many more features of PVM and MPI were used but are not docu-

mented for want of space.

0o



About the Project Report

In this project report, we have tried to document all the aspects of the project, right from the observa-
tions and the theoretical results known previously and those that were derived by us during the course
of the project, the various algorithms developed and used during the project and the various programs
and implementations carried out during the project. The project gave us an opportunity to learn some
of the rich software tools available under a Linux system. One of them was a typesetting system
called ETEX, using which this project report was developed. TAigX file was calledreport.texand

it was converted into a Postscript file using the following commands:

$ latex report

$ bibtex report generate bibliography

$ makeindex -s myright.ist report .. generate index
$ latex report

$ latex report run till all references resolved

$ dvips -0 report.ps report.dvi . create a .ps file

The Postscript file was then directly fed to a Postscript Printer for taking the printouts.

Here, we briefly describ&TgX as used in the project report. This project report was typeset in
IATEX and extensive use of varioudTiEX features was made. New environments likean, proof,
observation, result, exampktc. were defined. The bibliographic database was maintained using
BIBTEX using theplain style. The figures for this report were drawn using the softwdige from
where they were converted into combined Encapsulated Postscript fS)drmat for inclusion
in the report. This format enables inclusion of mathematical formulae into the figures. Some hacking
with thexfigfile format was required to get the things correct. Index was generated usiiigken-
dexutility. More information aboutAIEX and the associated utilities can be found in [29, 15, 19].
The following ETpX packages were used:
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| Package Use |
times For using the Times font in the document
oldgerm For Gothic style font in the certificate
graphics For inclusion of Encapsulated Postscript files
subfigure For managing and numbering subfigures
calc For maintaining user defined counters
theorem For theorems, results and the likes
fancyhdr For customizing headers and footers
vpage For customizing the page size and margins
amssymb For special mathematical symbols like
amsmath For typesetting mathematics
algorithmic, algorithm| For typesetting algorithms
pifont For special Postscript characters like
multicol For multicolumn typesetting
makeidx For automatic index generation
textfit For arbitrarily enlarging text size in chapter numbe
titlesec For customizing the chapter, part titles
longtable For typesetting tables
ulem Forunderline and likes
setspace For single and double spacing
pstricks For some Postscript tricks

In general, we can conclude that typesetting the project report uUSip§ was much more
efficient than aWYSIWYG environment like Microsoft Word. Also, we had to spend lesser time
with the report than we would had to do otherwise to produce the same quality document. The work
of setting upATEX, learning £TeX and trying out different packages was done by Rahul Joshi.

gon
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