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Abstract

Data flow analysis is one of the important activities carried out by an optimizing compiler before
applying any optimizations. It involves the collection of information about how the various data items
in the program are defined and used. This information can then be used by the optimizer to apply
various transformations. Global data flow analysis is performed at the level of the entire program
rather than the basic blocks. Currently, the iterative methods are being widely used for performing
this analysis. The iterative data flow analysis has a time complexity ofO((d + 2)n), whered is the
depth of the flow graph. In the worst cased = n− 1, so that iterative data flow analysis in worst case
isO(n2). Also, this method involves some extra overheads.

Ken Kennedy, in 1975, had proposed another approach towards global data flow analysis, in
which we construct an intermediate representation of the flow graph, callednode listingand then
apply the data flow equations to the nodes in that order. The significance of this approach towards
data flow analysis is that if the node listing for a flow graph can be found quickly, it will enable us
to do the various kinds of global data flow analyses quickly. Shortly after that, in 1976, Al Aho and
J.D.Ullman, gave a method of constructing node listings for reducible flow graphs. Their algorithm
produced a node listing of lengthn+ 2.01n log n in timeO(n log n). Their method was based on the
theme of converting a reducible flow graphs into spiral graph, finding the node listing of the spiral
graph, and from that, derive the node listing of the original graph.

However, it has been experimentally observed that for all reducible flow graphs, the length of
the minimal node listing is very small than the one proposed by Aho and Ullman. In particular, it
has been seen that for every reducible flow graph ofn nodes, there exists a node listing of length
n + n log n. To prove this result, we propose a new concept calleddensity of a graph, denoted asδ,
which is the maximum number of times a node appears in some node listing. Thus, ifδ is the density
of a graph, there exists a node listing for the graph of lengthL ≤ (δ + 1)n. We then propose to show
thatδ ≤ blog nc for any reducible flow graph, so that for all reducible flow graph ofn nodes, there
exists a node listing of lengthn+ n log n.

Towards proving this result, we have derived many intermediate results. We have developed the
concept of amaximal reducible flow graphwhich are special type of reducible flow graphs of which
every reducible flow graph is a subgraph. Thus, we can use these graphs to find or prove the upper
or lower bounds on the properties of reducible flow graphs.Spiral graphsandbinary parsable flow
graphare special types of maximal reducible flow graphs for whom we have proved thatδ ≤ log n.
Based on this result, we also have an “intuitive” yet informal proof forδ ≤ log n for all reducible
flow graphs.

A study of the properties of maximal reducible flow graphs and some experimentation also brings
out the significance of thedepthand thedominator treeof a flow graph and motivates us to change
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our original conjectureδ ≤ log n to δ ≤ log (d+ 1).

Given all the non-redundant acyclic paths in a flow graph, finding its density manually may not
always give correct results, as a node listing with smaller density may exist. Brute force method
remains the only choice and its iscomputationally very hardbecause good bounding functions are
not known. So, we have implemented brute force programs to find the density of the given reducible
flow graph onPARAM 10000 Supercomputerusing theParallel Virtual Machineand theMessage
Passing Interfacelibraries at theCenter for Development of Advanced Computing’s National PARAM
Supercomputing Facility.

We have also written several papers regarding our findings and we wish to publish them in some
journals.

Apart from these theoretical developments, we also have implemented a library of tools on a
Linux system using such tools aslex, yaccandshell scripts. These tools are the implementations
of known algorithms, the algorithms developed by us, as well as many “utility” programs. These
tools help us with experimenting with flow graph and carrying out common operations. For user
friendliness, we have also provided a GUI front end to these tools using both theQt library as well as
theGTK+/GNOME library.

❑ ❑ ❑



Acknowledgments

First and foremost, we would like to express our indebtedness toDr. Uday Khedker Reader, De-
partment of Computer Science, University of Pune for guiding us, allowing us to explore new ideas
and allowing us to participate in his research. Secondly, we would like to thank our internal guides,
Prof. A. A. Sawant andProf. P. P. Kajave for taking keen interest in the project and helping us
from time to time. We would like to thankProf. V. K. Kokate , Head of the Department of Com-
puter Engineering, Govt. College of Engineering, Pune for taking interest and allowing us to do this
project.

We would also like to thank theCenter for Development of Advanced Computing (CDAC)for
allowing us to use thePARAM 10000 Supercomputerat theNational PARAM Supercomputing
Facility for implementing brute force programs to verify our results. In particular, we wish to thank
Dr. P. K. Sinha for allowing us to carry out the experiments,Dr. Sunder Rajan for guiding us and
Dr. Anbarasu for helping us implement the brute force program on a Parallel Virtual Machine. We
would like to thankMrs. Akshara for helping us re-implement the programs using the Message
Passing Interface.

We would also like to thankDr. A. A. Diwan, Dept. Of Computer Science, Indian Institute
of Technology (IIT), Powai for guiding us and discussing the problem with us.

We would like to thankJennifer Kilcoyne andChris Smith of theAcademic Pressfor allowing
us to print the reference papers from theJournal of Computer and Systems Sciencein our report.

Last but not the least, we would like to thank all the people involved in the development of Linux
and other free software that we used heavily in our project. We would also like to thank the members
of thePune Linux User’s Groupmailing list for solving our difficulties from time to time.

Once again our deepest gratitude to all mentioned above and those whom we might have un-
knowingly forgotten to mention.

Rahul U. Joshi
Vinay V. Kakade

Medha G. Trivedi



CHAPTER 1
Introduction

In this introductory chapter, we will see what data flow analysis is and how it is useful for performing
various program optimizations. More information on these optimizations can be found in [5].

1.1 Code Optimization

Ideally, compilers must produce code that is as good as can be written by hand. However, this goal is
very difficult to achieve. However, the code produced by straightforward compiling can made to run
faster or take less space, or both by applying certain program transformations calledoptimizations
. Compilers that apply such code improving transformations are calledoptimizing compilers. The
optimizations that are applied by such compilers can be divided into two categories,

Machine Dependent Here, the specific characteristics of the underlying machine for which the code
is generated are taken into consideration.

Machine Independent Here, the transformations are applied without considering any properties of
the target machine.

The best program transformations are those that yield the most benefit for the least efforts. Some
of the properties that the program transformations must have are

1. It must preserve the meaning of the program.

2. It must speed up the program by a measurable amount.

3. It must be worth the effort i.e. a long and complex optimization that speeds up the program by
only a small amount is not worth applying.
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1.2 An Organization for an Optimizing Compiler

The code improvement phase of a compiler consists ofcontrol flow analysisanddata flow analysis
followed by the application of the transformations, as shown in Figure 1.1

Transformat-
ions

Front End

Code

Generator

Code

Optimizer

Control
flow
Analysis

Data
Flow
Analysis

Figure 1.1: Organization of the code optimizer

Control flow analysistraces the patterns of possible execution in a program. For this purpose,
a program is represented by acontrol flow graphor simply aflow graph. In a flow graph, the edges
indicate the flow of control and the nodes represent the basic blocks, as will be discussed later. The
construction, structure, representation and properties of such graphs is a part of control flow analysis.

Data flow analysistraces the possible definitions and uses of data along the potential control flow
paths and collects the information about certain attributes of the data items. For example, data flow
analysis of a program may indicate that for all possible paths the program takes, the value of a certain
variable sayi at a certain point in the program is always1. This fact can then be used by the optimizer
to speed up the code. Data flow analysis is generally performed by solving a system of simultaneous
equations. If the analysis is performed by looking only at the statements in a basic block, it is called
local data flow analysis. On the other hand, if the data flow analysis is performed by looking at all
the the basic blocks in a program, it is calledglobal data flow analysis. Normally, local data flow
analysis is performed before the global data flow analysis. There are many types of data flow analysis
like unidirectionalandbidirectional, inter-proceduralandintra-procedural. Furthermore, data flow
analysis can be performed by using various methods viz.iterative, exhaustive, incrementaletc. We
will be discussing these terms in later chapters.

1.3 An Outline

This project report is divided into five parts. The first part aims at introducing data flow analysis
and node listing. It contains an explanation and definitions of commonly used concepts in data flow
analysis and it also explains the known algorithms for data flow analysis. It describes the node listing
approach to data flow analysis and the algorithm due to Aho and Ullman. The second part describes
the research that we have done during the project and the results that we have obtained. The third
part deals with software engineering. The fourth part contains details of various implementations that
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were carried out during the project. The fifth part contains some of the papers that we referred during
the project.

Chapter 2 describeflow graphsand states some of their properties of our interest. Chapter 3
describeddata flow analysisin detail. It also explains the terms such asforward, backward, unidirec-
tional andbidirectionaldata flow analysis. It also explains theiterative, incremental, inter-procedural
and intra-proceduraldata flow analysis. Chapter 4 explains thenode listingapproach for data flow
analysis, its significance and current limitations. It also briefly describes the algorithm given by Aho
and Ullman for constructing the node listings for reducible flow graphs.

Chapter 5 introduces the concept of thedensityof a graph and explains various results that we
have derived regarding the densities of reducible flow graphs. Chapter 6 describesmaximal reducible
flow graphsthat we developed during the project. Chapter 7 described various properties of spiral
graphs in relation to the maximal reducible flow graphs. It also describes a new algorithm for the
reduction of a flow graph into a spiral graph. Chapter 8 is a cornucopia of some smaller but important
results that were found during the project. Chapter 9 describedminimal reducible flow graphsthat
are basically a motivation towards grouping all the flow graphs having the same density. Chapter 10
concludes and also examines what more can be done towards continuing the research.

Chapter 11 comments about the organization of the programs developed during the course of the
project and the tools used therein.

Chapter 12 describes the details of the brute force implementation for finding exact densities of
flow graphs. This implementation was carried out on thePARAM 10000 Supercomputerat CDAC
using theParallel Virtual Machineand theMessage Passing Interfacelibraries. Chapter 15 lists the
various softwares that were used during the project. Chapter 16 provides a detailed description of
all the programs developed and serves as a manual. Chapter 17 shows some of the algorithms that
were developed and implemented. Chapter 14 describes the GUI front end for the programs that was
developed using the Qt Library under Linux and a demonstration of the programs developed. Chapter
13 describes another GUI front end developed using the GTK+/GNOME libraries.

Appendix A includes some of the papers that we referred during the project. Appendix B presents
the papers that were written during the project. Finally, we list all the books, papers, reports etc. that
were some time or the other used during the project.

❑ ❑ ❑
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CHAPTER 2
Flow Graphs and Their Properties

In an optimizer, a program is represented as aflow graph. In this chapter we will see what these flow
graphs are and also examine some properties and algorithms concerning flow graphs.

2.1 Basic Blocks

A control flow graphor simply aflow graphis a graph representation of the intermediate code gen-
erated by the intermediate code generator. Nodes in the flow graph represent computations whereas
the edges represent the flow of control. A flow graph is extensively uses as a vehicle for collecting
information about the intermediate program.

Definition 2.1 (Basic Block) A basic blockis a sequence of consecutive statements in which flow
of control enters at the beginning and leaves at the end without halt or possibility of branch except at
the end.

Thus, we can see that a basic block is nothing but any sequence of program statements not
containing transfer of control instructions (i.e. goto’s) except at the end. Algorithm 1 can be used to
partition a sequence of intermediate code statements into basic blocks,

Example 2.1 For the intermediate code in Figure 2.1, the leaders are the statements (1), (2), (3),
(4), (6) and (7). Therefore the basic blocks are{(1)}, {(2)}, {(3)}, {(4), (5)}, {(6)} and{(7)}.

(1) if a <= b goto (3)
(2) max := a
(3) goto (5)
(4) max := b
(5) if c <= max goto (7)
(6) max := c
(7) return max

Figure 2.1: Division into Basic Blocks
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Input A sequence of intermediate code statements
OutputA list of basic blocks
Method

1. We first determine the set of leaders, the first statements of basic blocks. The rules we
use are the following.

(a) The first statement is a leader.

(b) Any statement that is the target of a conditional or unconditional goto is a leader.

(c) Any statement that immediately follows a goto or conditional goto statement is a
leader.

2. For each leader, its basic block consists of the leader and all statements upto but not
including the next leader or the end of the program.

Algorithm 1: Division into basic blocks

2.2 Flow Graphs

We can add the flow-of-control information to the set of basic blocks making up a program by con-
structing a directed graph called aflow graph[5, p. 532]. The nodes in the flow graph are the basic
blocks. One node is distinguished asinitial ; it is the block whose leader is the first statement. There is
a directed edge from blockB1 to blockB2 if B1 immediately followsB2 in some execution sequence;
that is, if

1. there is a conditional or unconditional jump from the last statement ofB1 to the first statement
of B2.

2. B2 immediately followsB1 in the order of the program, andB1 does not end in an unconditional
jump.

We say thatB1 is apredecessorof B2 andB2 is asuccessorof B1.

When a program is converted into a flow graph, the jump statements at the end of a block are
made to point to the block rather that to the actual quadruples. Secondly, in a flow graph, an edge
from blockB to blockB′ does not specify the condition under which the control flows fromB toB′.

2.2.1 Dominators

The dominator relationships are one of the most important characteristics of flow graphs that enable
us to detect loops apart from many other things.

Definition 2.2 (Dominators) A noded in a flow graphdominatesnoden, written asd domn, if
every path from the initial node of the flow graph ton goes throughd.

From the above definition, it can be easily seen every node dominates itself. Also, it can be seen
that the initial noden0 dominates all the nodes in the flow graph. Finding the dominator relationship
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in a flow graph involves some kind of data flow analysis. An algorithm for finding dominators in
given in Chapter 17 (Algorithm 19).

A useful way of presenting the dominator information of a flow graph is in a tree, called the
dominator tree. In a dominator tree,

1. The initial node is the root of the tree.

2. Each noded dominates only the descendents in the tree.

The existence of the dominator trees follows from a property of dominators; each noden has a unique
immediate dominatorm that is the last dominator ofn on any path from the initial node ton, that is,
the immediate dominatorm has the property that ifd 6= n andd domn, thend domm.

0

1

2 3

4

5

(a)

0

1

2 3 4

5

(b)

Figure 2.2: Flow Graph and its dominator tree

Example 2.2 Figure 2.2–a shows a flow graph and Figure 2.2–b shows its dominator tree. The
initial node0 dominates all the other nodes and hence it is the root of the dominator tree. Node1
dominates node2 since control can flow to node2 only after passing through node1. Similarly, node
1 also dominates nodes3, 4 and5. Nodes2 and3 dominate only themselves. Node4 dominates node
5.

Definition 2.3 (Back Edge) An edge in a flow graph is called abackedge if its head dominates
its tail.(If n→ m is an edge in a flow graph, thenm is the head andn is the tail).

Thus, ifn → m is a back edge ifm dominatesn. For example, in the flow graph of Figure 2.2,
the edge4→ 1 is a back edge as1 dom4. Similarly the edges3→ 0 and5→ 3 are back edges.

Observation
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1. Since the initial noden0 dominates all the other nodes in the flow graph, all the edges in the
flow graph of the formn→ n0, n 6= n0 are back edges.

2. Since each node dominates itself, self loops of the formn→ n are back edges.

Definition 2.4 (Forward Edge) An edge in a flow graph is called aforwardedge if it is not a back
edge.

Observation Any edge from the initial node to some other node i.e. any edge of the formn0 →
n, n 6= n0 is a forward edge sincen does not dominaten0.

The dominator relationship can be used to find the loops in a flow graph. From the principles of
structured programming, we know that a loop must have a single entry point, called itsheader. This
entry point dominates all the nodes in the loop. Also, there must be at least one way to iterate the
loop i.e. at least one path back to the header. The loops in a flow graph can be defined in terms of
back edges.

Definition 2.5 (Natural Loop) Given a back edgen → d, we define thenatural loopof the edge
to bed plus the set of nodes that can reachn without going throughd. Noded is the header of the
loop.

2.2.2 Reducible Flow Graphs

Reducible flow graphs[32] are special types of flow graphs.Almost all the flow graph that one en-
counters in practice arereducible. In particular, use ofstructured programmingprinciples results in
program whose flow graphs are reducible. Any program not containing goto’s will be reducible. One
important property of reducible flow graph is that there are no jumps into the middle of loops, the
only entry into a loop is through itsheader. There are many equivalent definitions of reducible flow
graphs. We will see them one by one.

Definition 2.6 (Reducible Flow Graph) A flow graphG is reducible if and only if we can parti-
tion the edges into two disjoint groups, called the forward edges and back edges, with the following
two properties:

1. The forward edges form anacyclicgraph in which every node can be reached from the initial
node.

2. The back edges consists only of edges whose heads dominates their tails.

Thus, if a flow graph is reducible, then removing all the back edges in the flow graph gives us an
acyclic graph. This condition can be used to test for reducibility of flow graphs.

Example 2.3 Consider the flow graph in Figure 2.2. Removing the back edges3 → 0, 4 → 1 and
5 → 3, it can be easily seen that the resulting flow graph is acyclic. Hence the flow graph in Figure
2.2 is reducible.
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1

2 3

Figure 2.3: A non reducible flow graph

Example 2.4 As another example, consider the flow graph in Figure 2.3. Here1 is the initial node,
so edges1 → 2 and1 → 3 are forward edges. Now, neither2 dominates3 not does3 dominates2.
So both the edges2 → 3 and3 → 2 are also forward edges. Thus, all the edges in this graph are
forward edges. Clearly, this graph has a cycle(2, 3, 2). Hence the graph is not reducible.

The flow graph in Figure 2.3 is not reducible because the nodes2 and3 form a loop and one can
enter this loop either through the edge1→ 2 or 1→ 3 i.e. the loop is not a single entry loop.

We now state some more properties of reducible flow graphs [32].

2.2.3 T1 - T2 Analysis

We first define the two transformations as follows

Definition 2.7 ( T1 Transformation) If n is a node in a flow graph with a loop i.e. an edgen→ n,
then aT1 transformationis defined as the deletion of the loop.

Definition 2.8 ( T2 Transformation) If there is a noden, not the initial node, that has a unique
predecessorm , then aT2 transformationis defined as the consumption of noden by nodem, that is,
delete noden and make all successors ofn (includingm possibly) as successors ofm.

We now state an equivalent definition of reducibility [32].

Result 2.1 A flow graph is reducible if and only if it can be transformed into a single node by
repeated applications ofT1 andT2 transformations.

Example 2.5 Figure 2.4 shows how a flow graph is reduced into a single node by repeated applica-
tions ofT1 andT2 transformations. (a) is the original flow graph. Noded has the only predecessorc,
so we apply aT2 transformation to get (b). Then we remove the self loop on the nodecd by applying
a T1 transformation to get (c). Nowb has the only predecessora, so applying aT2 transformation
gives (d). Nowcd has the only predecessorab, so again applying aT2 transformation gives (e). Thus,
we have transformed the original graph into a single node by applyingT1 andT2 transformations.
Hence, the flow graph in (a) is reducible.

We now state a theorem regarding irreducible flow graphs [32]. We first define a (✶)-flow graph.

Definition 2.9 (( ✶)-flow graph) A (✶)-flow graph is defined as any of the flow graphs represented
in Figure 2.5, where the dashed lines denote node disjoint (except for endpoints, of course) paths;
nodesa, b, c, andn0 are distinct, except thata andn0 may be the same.
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b cd
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a

b cd
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ab

cd

(d)

abcd
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Figure 2.4: T1 - T2 Analysis

n0

a

b c

Figure 2.5: The (✶)-subgraph

Result 2.2 (The ( ✶)-Characterization Theorem) A flow graph is irreducible if and only if it
contains (✶).

2.2.4 Regions

The division of a flow graph into regions serves to put an hierarchical structure on a flow graph.

Definition 2.10 (Region) We define a portion of a flow graph called aregion to be a set of nodes
N that include aheader, which dominates all other nodes in the region.

Another equivalent definition of a region from [4] is:

Definition 2.11 (Region) A region with headerh of a flow graphG = (N,E, n0) is a set of nodes
N ′ and edgesE ′ ⊆ N ′ ×N ′, with h in N ′, such that ifm→ n is inE, then
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1. if n is inN ′ andn 6= h, thenm is inN ′, and

2. if m andn are inN ′ andn 6= h, themm→ n is inE ′.

That is, the only way to enter a region from outside is through its header.

We now state the definition of the dag of a flow graph [32].

Definition 2.12 (DAG of a Flow Graph) A dag of a flow graphG = (N,E, n0) is an acyclic
flow graphD = (N,E ′, n0) such thatE ′ ⊆ E and for any edgee in E −E ′ , (N,E ′ ∪ {e}, n0) is not
a dag. That is,D is a maximal acyclic sub-flow graph.

The following result regarding DAG of a reducible flow graph is from [32].

Result 2.3 If G = (N,E, n0) is a reducible flow graph, thenD = (N,E − B, n0) is a dag ofG,
whereB is the set of back edges inG.

The reason for dividing a flow graph into regions is to impose a hierarchical structure on the flow
graph. Formally, this structure is defined in terms of the “parse” of a flow graph. We first state the
following result from [4].

Result 2.4 LetR = (N ′, E′) be a region of some flow graphG represented by some node during
the reduction ofG, withN ′ not a singleton. ThenN ′ can be partitioned into two nonempty disjoint
sets of nodesN1 andN2, such that(N1, E1) and (N2, E2) are regions, whereE1 = E ′ ∩ N1 × N1

andE2 = E ′ ∩N2 ×N2.

Thus every non singleton region can be divided into two regions. We call this division as “parse”
in this report, though the actual definition is somewhat different. Thus a parse is nothing but a
sequence showing how a region and its parses are further parsed.

❑ ❑ ❑



CHAPTER 3
Data Flow Analysis

Iterative algorithms are used for practical intra-procedural data flow analysis.There are several varia-
tions of iterative algorithms. The following three are the most common:

1. Worklist version

2. Round Robin version

3. Node listing version

The worklist versions maintain a set containing “work-to-be-done” that is initialized, updated on-
the-fly as the algorithm executes and eventually exhausted. The worklist contains information to
be propagated whose “influence” may not have been recorded yet. Nodes may be “visited” in an
arbitrary order.

The round-robin version propagates information by starting with an initial estimate of the desired
information to nodes by repeatedly visiting the nodes in a round-robin fashion until information flow
stabilizes(i.e., a fixed point is reached).

The Node listing version first preprocesses the flow graph to obtain a list of nodes ( with repe-
titions, in general ) then propagates information by visiting nodes in the order in which they occur
on the list. The node listing has the property that visiting nodes in the indicated order suffices to
propagate information.

3.1 Advantages of using Iterative Algorithms

1. Worklist and round-robin versions of the iterative algorithms apply toall known data flow
analysis.

2. These algorithms are very easy to program. No graph reductions are necessary, as in interval
analysis algorithm and Ullman’s algorithm. Therefore the iterative algorithms are oblivious to
the reducibility of the underlying flow graph.
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3.2 Disadvantages of using Iterative Algorithms

1. The disadvantage of the node listing version of the iterative algorithm is that the preprocessing
necessary to compute a good node listing is usually nontrivial [4, 22].

2. The most important undesirable quality of the worklist and round-robin versions is the fact that
the worst case time complexity of these algorithms is not good.

For example, with sparse reducible flow graphs on “bit vector problems” these algorithms re-
quireO(n2) bit vector steps in the worst case, whereas Ullman’s algorithm requires at most
O(nlogn) bit vector steps.

3. Another undesirable quality is that because the iterative algorithms do not analyze the underly-
ing flow graphs, nothing is known about the loop structure of the graph, should this information
be desired.

Nevertheless, the ease of programming and generality make the iterative algorithm excellent for prac-
tical use when a flow graph is necessary, until of course another solution is discovered!

The sections to continue describe in brief variations of the iterative algorithm applied to a class
of very simple data flow analysis problems that are called“bit vector frameworks”.
Note : Considering just bit vector frameworks is sufficient because

1. it simplifies the exposition in that these problems are easier to understand than more general
problems.

2. such problems do occur often enough to justify a separate treatment.

3.3 Representative, Basic Data Flow Analysis Problems

There is an important subclass in intra-procedural data flow analysis problems each of which can be
formulated as a collection of set equations, reminiscent of equations for conservation of flow and
the sets involved with each flow graph node, each bit position corresponds to a program variable (or
expression), and a bit indicates nonexistence or possible existence of an attribute of that variable (or
expression) at that node.

There are four representative problems of this subclass.These problems are called

1. “available expressions”

2. “reaching definitions”

3. “live variables”

4. “very busy expressions”

These problems are very similar in that almost any algorithm to solve one of these problems can, with
slight modification, be used to solve the other problems.

The attention is restricted to intra-procedural rather than inter-procedural problems. For this
reason we assume that for for the procedure under scrutiny :
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1. there is a control flow graph

2. all relevant local data flow information is available

3. all variable aliasing is known, can be handled, and thus can be ignored and

4. the procedure is isolated in that we may ignore where and how it is called.

3.4 Brief description of each problem

3.4.1 Available Expressions (AE)

An expression such asX + Y is available at a pointp in a flow graphG = (N,A, s) iff every
sequence of branches that the program may take top causeX + Y to have been computed after the
last computation ofX or Y . By determining the set of available expressions at the top of each node
in G, we know which expressions have already been computed prior to each node. Thus, we may be
able to eliminate the redundant computation of some expressions within each node.

3.4.2 Reaching Definitions (RD)

A definition of a variablex is a statement that assigns, or may assign, a value tox. A definition d
reachesa pointp if there is a path from the point immediately followingd to p, such thatd is not
“killed” along that path. Intuitively, if a definitiond of some variablea reaches pointp, thend might
be the place at which the value ofa used atp might last have been defined.Wekill a definition of a
variablea if between two points along the path there is a definition ofa.

3.4.3 Live Variables (LV)

A number of code improving transformations depend on the information computed in the direction
opposite to the flow of control in a program. Inlive variable analysis we wish to know for variable
x and pointp whether the value ofx atp could be used along some path in the flow graph starting at
p. If so, we sayx is live atp; otherwisex is dead atp.

3.4.4 Very Busy Expressions (VBE)

An expressione is very busyat a pointp in a flow graph iff it is always used before it is killed. This
means that no matter what path is taken fromp, the expressione will be evaluated before any of its
operands are defined.

3.5 A Taxonomy

The following table summarizes the four types of basic data flow analysis problems.
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Set Intersection, Set union,
“and” problems “or” problems

Top–Down Problems Available Expressions Reaching Definition
(Operation over predecessors) (AE) (RD)

Bottom–Up Problems Very Busy Expressions Live Variables
(Operation over successors) (VBE) (LV)

The AE and VBE use the set intersection operation and require a largest solution, whereas, RD
and LV use the set union operation and require a smallest solution.For AE and RD the operation is
over predecessors, whereas, for VBE and LV it is over successors. We call AE and RDtop down
(or forward)problemsbecause information is propagated in the same direction as control flow to
solve these problems. Conversely, we call VBE and LVbottom up(or backward)problemsbecause
information must be propagated in the opposite direction of control flow to solve these problems.

3.6 Iterative Algorithms

3.6.1 Worklist Version

There are three worklist versions of the iterative algorithm.

1. the segregated version,

2. the integrated version, and

3. Kildall’s version.

In the segregated version we process one expression at a time.In the integrated version and Kildall’s
version we intermix the processing of expressions, but in slightly different ways. Detailed algorithms
of each version is beyond scope of this project report.

3.6.2 Round-Robin Version

This version uses bit vectors and the bit vector operationsbvand andbvor .Instead of maintaining
a worklist, we repeatedly visit each node in round-robin fashion and propagate0′s forward for AE
(1′s backward for LV). The algorithm terminates when one iteration fails to change any bit of any bit
vector.It follows the “iterate-until-stabilization” paradigm.

❑ ❑ ❑



CHAPTER 4
Introduction to Node Listing

In order to give a more efficient data flow analysis method,Ken Kennedy in 1975 proposed a new
approach towards global data flow analysis [22]. In his paper, he also conjectured a node listing
constructor with time complexityO(n log n)1. Immediately after that, anO(n log n) node listing
constructor was given byAho andUllman [4]. The length of the node listing wasn + 2.01n log n.
In this chapter, we introduce the node listing based approach to data flow analysis and see how it can
lead to efficient incremental data flow analysis of flow graphs.

4.1 Depth First Ordering

In all the problems of data flow analysis considered before, it can be observed that anyevent of
significance at a node will be propagated to that node along an acyclic path. Thus, any cyclic path
does not contribute towards the data flow analysis [5, p 672]. If all the useful information propagates
along acyclic paths, we have an opportunity to tailor the order in which we visit nodes in iterative
data flow algorithms so that after relatively few passes through the nodes, we can be sure that the
information has passed along all the acyclic paths.In particular, if we apply the data flow equations to
the nodes in the depth first order, the number of iterations required are bounded by thedepthof the
graph. In that case, the algorithm 2 gives a general algorithm for iterative data flow analysis.

It can be observed in this case that ifd is the depth of the graph, thend+1 iterations are sufficient
to propagate the data flow values along acyclic paths. However, the above algorithm requires one
more pass to detect the fact that all the data flow variables have been propagated. Thus, ifd is the
depth of the graph, then the data flow analysis can be performed in timeO((d + 2)n). In the worst
case,d = n− 1 and hence in general, data flow analysis by iterative methods still remains anO(n2)
problem.

It can be seen that there are two major areas of inefficiencies in the iterative approach towards
data flow analysis [22].

1. First, an extra pass through the program is required to discover that none of the data flow

1All logarithms are to the base2 unless otherwise stated
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1: for i := 0 to n− 1 do /* Initialize the data flow variables */
2: Initialize in() and out() for block i ;
3: end for
4: change := true ;

/* Apply equations till the in’s and out’s stabilize */
5: while change == true do
6: change := false ;
7: for each block B in depth first order do
8: apply data flow equations to block B ;
9: update change;

10: if there is a change in in() or out() of block B then
11: change := true ;
12: end if
13: end for
14: end while

Algorithm 2: Iterative Data Flow Analysis

variables change. This extra pass and the testing for changed data flow variables (sets) on each
pass results in a lot of unnecessary work that can be avoided if we could somehow know when
to halt the iteration.

2. Second, iteration over every node in each pass seems to be unnecessary. The problem is to
iterate exactly enough times to transmit information along any acyclic path in the program.

The node listing method of data flow analysis attempts to overcome both the above inefficiencies
of the iterative data flow analysis method. The node listing is an intermediate representation of the
flow graph that facilitates the propagation of data flow variables along the acyclic paths.

4.2 Motivation of Node Listing

To gain some motivation behind the node listing, consider the flow graph given in Figure 4.1–a.

The depthd of the graph in Figure 4.1–a. is3. As a result, using the iterative data flow analysis
algorithm requires5 iterations over all the nodes in the flow graph. If however, the data flow equations
are applied to the nodes of this flow graph in the order(1, 2, 3, 4, 3, 2, 1), then data flow analysis would
be correctly performed and fewer than2 iterations over the graph will be required. Thus, the node
listing specifies the order in which the equations are to be applied to the nodes of the flow graph.

To formally define a node listing, we first define simple and basic paths in a flow graph.

Definition 4.1 (Simple Path) A simplepath in a flow graph is a path that does not include the
same edge twice. That is, a simple path is nothing but an acyclic path.

Definition 4.2 (Basic Path) A basicpath in a flow graph is a simple path(x1, x2, . . . , xk), such
that there is no shorter simple path fromx1 to xk which is a subsequence of(x1, x2, . . . , xk).
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Figure 4.1: Example Flow Graphs

Example 4.1 In the flow graph shown in Figure 4.1–b the path(1, 2, 3, 4, 5) is a simple path. The
path (1, 2, 4, 5) is also a simple path. The path(1, 2, 3, 4, 5) is not a basic path because there is a
simple path(1, 2, 4, 5) which is a subsequence of(1, 2, 3, 4, 5). The path(1, 2, 4, 5) is a basic path.

It can be seen that in case of “there exists” problems like live variables and reaching definitions,
propagation of the data flow variables along the basic paths is sufficient. However, in case of “for all”
problems like available expressions, propagations along the basic paths is not sufficient, we need to
propagate the values along all the simple paths in the flow graph.

4.2.1 Strong Node Listing

Definition 4.3 (Strong Node Listing) A strong node listingfor a flow graphG = (N,E, n0) is
a sequence(n1, n2, . . . , nm),m ≥ n, of nodes fromN , in which nodes may be repeated more than
once, such that all the simple paths inG are (not necessarily contiguous) subsequences thereof.

Example 4.2 For the flow graph in Figure 4.1,(1, 2, 3, 4, 3, 2, 1) is a strong node listing.

Definition 4.4 (Minimal Node Listing) A strong node listing for a flow graph is calledminimal
iff there is no shorter node listing for that flow graph.

The following three results about strong node listings are known
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• Every reducible flow graph has a node listing of length at mostn+ 2.01n log n.

• There exists reducible flow graphs for which no strong node listing is shorter than1
2
n log n.

• A strong node listing for a reducible flow graph withe = O(n), e being the number of edges in
the graph, can be constructed inO(n log n) time.

4.2.2 Weak Node Listing

Definition 4.5 (Weak Node Listing) A weak node listingfor a flow graphG = (N,E, n0) is a
sequence(n1, n2, . . . , nm),m ≥ n, of nodes fromN , in which nodes may be repeated more than
once, such that all the basic paths inG are (not necessarily contiguous) subsequences thereof.

Since every basic path is also a simple path, every strong node listing for a flow graph is also a
weak node listing.

For the purpose of data flow analysis, it can be seen that for such problems as live variables and
reaching definitions, wherein propagation along basic paths is sufficient, a weak node listing suffices
for data flow analysis. However, for such problems as available expressions, wherein propagation
along all the simple paths is necessary, a strong node listing is necessary to perform the data flow
analysis. As a result, henceforth, we will concentrate only on strong node listings. Henceforth, when
we mean node listing, it is implicitly understood to be a strong node listing.

4.3 Some Known Results Regarding Node Listings

In his paper “Node Listings Applied to Data Flow Analysis,” Ken Kennedy [22] gives many results
regarding the node listings for reducible flow graphs. In this section, we state some of them that are
of our interest.

Result 4.1 LetG = (N,E, n0) be an acyclic flow graph, that is, there does not exists a sequence
(x1, . . . , xk) of nodes inG such thatx1 = xk and (xi, xi+1) ∈ E, 1 ≤ i < k. Then there exists a
node listing of length|N | for G. Furthermore, this node listing contains every path, not merely the
basic paths.

Observation The above result really says that for acyclic flow graph, the length of the node listing
if |N | and that a node listing for an acyclic flow graph can be obtained by applying a “topological”
sort to the flow graph. Also, if the flow graph is not acyclic, then after the removal of the back
edges, it becomes acyclic and the node listing for such an acyclic flow graph is also called itsacyclic
ordering.

Result 4.2 For every reducible flow graph ofn nodes, there exists a node listing of length(d+ 1)n
whered is the depth of the graph

Proof:
In the previous section, we have seen that if during the data flow analysis, the nodes are visited in
depth first order, thend+ 2 iterations are sufficient for the data flow analysis. Of these, one iteration
is used just to discover that the data flow analysis is complete, and hence it is an overhead. Therefore,
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in reality, onlyd+ 1 iterations are necessary for data flow analysis. Hence, if we repeat the depth first
ordering of the reducible flow graphsd + 1 times, the resulting sequence covers all the acyclic paths
in the flow graph. This exactly is the node listing with length(d+ 1)n. �

Result 4.3 For every acyclic reducible flow graph, there exists a node listing in which each node
appears exactly once.

Proof:
It can be easily seen that a topological sort [54] of an acyclic flow graph will have all the acyclic paths
in the flow graph as its subset. Thus, the topological sort of the acyclic graph is its node listing.�

From a lemma in [4], we know that any acyclic path that enters a regionR from a node outside
the region cannot traverse any back edge. Thus, it can be easily seen that if a path enters a region
from outside, it traverses a subsequence of the topological sort of the flow graph obtained after the
removal of the back edges. We define this as acyclic ordering.

Definition 4.6 (Acyclic Ordering) If G is a reducible flow graph, then itsacyclic orderingis
defined as any topological sort of the flow graph obtained fromG by removing all the back edges.

We follow the convention of indicating the acyclic orderings by writing a “hat”i.e. ifA is the
node listing for a certain flow graph, then its acyclic ordering will be denoted asÂ. Since, in general,
an acyclic graph can have more than one topological sort, there are, in general, more than one acyclic
orderings for a reducible flow graph.

4.4 Node Listing Based Data Flow Analysis

Once we have obtained the node listing for the given flow graph, performing the data flow analysis is
quite simple. We simply traverse the node listing, applying the data flow equations to each node as
we visit it. Algorithm 3 shows how data flow analysis is done using the node listing method.

1: Find the node listing, say L, for the flow graph ;
2: for i := 0 to n− 1 do /* Initialize */
3: Initialize in() and out() for node i ;
4: end for
5: for each node x in L do /* Iterate */
6: Apply the data flow equations to node x ;
7: end for

Algorithm 3: Node Listing Based Data Flow Analysis

It can be seen that the node listing based algorithm has the following advantages over the iterative
algorithm:

1. The algorithm makes sufficient number of passes over the nodes in the flow graph so that all
data flow variables are stabilized. Extra pass just to detect that data flow variables have now
stabilized is not required, since we now know when to stop the process (the end of the node
listing).
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2. We don’t have to keep a track of the changes in in() and out() of the various nodes in the flow
graph. Thus, the space for variable “change” along with the overhead of storing the old values
of in() or out() and checking for a change is avoided.

Thus, it can be seen that node listing based variation of the data flow analysis is indeed much more
efficient than the iterative algorithm. However, this method requires the construction of the node
listing of the flow graph which is not trivial. In fact, currently known algorithms take much longer
time (O(n log n)) to construct the node listing. It is this initial pre-processing overhead because of
which the node listing method is not used in practice. Also the iterative algorithm is much more
simpler to implement.

There are two variants of this node listing algorithm [31]. They are as follows,

1. For “there exists” problem in which the confluence operator is set union (such as Reaching Def-
initions and Live Variable), a weak node listing is sufficient to perform the data flow analysis.
On the other hand, for “for all” problems in which the confluence operator is set intersection,
(such as Available Expressions and Very Busy Expressions), a strong node listing is required
to perform the data flow analysis.

2. Forforward data flow problems (such as Available Expressions), we apply the data flow equa-
tions to each node in the node listing in their actual order i.e. the node listing is processed as
it is. However forbackwarddata flow problems (such as Live Variables), the equations are ap-
plied to the nodes in the node listing in reverse order i.e. the node listing is processed in reverse
order.

4.5 Algorithm by Aho and Ullman

Aho and Ullman [4] have given an algorithm for finding the node listings for reducible flow graphs.
This algorithm has a time complexity ofO(n log n) and produces a node listing of length bounded by
n+ 2.01n log n. In this section, we briefly describe this algorithm. Detailed information about it can
be found in [4], which has been included in this report in Appendix A.

4.6 Heuristic Node Listings

In this section, we will explain a heuristic algorithm for finding the node listings of reducible flow
graphs. Note that the time complexity of the algorithm is very large i.e.O(n2n). However, these
algorithms are suitable for experimentation with graphs having limited number of nodes.

We know that if the acyclic ordering of a reducible flow graph is repeatedd + 1 times, the
resulting sequence of nodes is a node listing. This is the basic principle behind the heuristic node
listing constructor. We first define aspanin an acyclic path.

Definition 4.7 (Span) If P is a acyclic path in a reducible flow graph, then aspanis defined as a
sequenceS of nodes inP having the following properties:

1. the nodes inS are consecutive inP i.e.S is apropersubsequence ofP ,

2. the nodes inP are in acyclic order, and
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3. S is not a subsequence of any other span inP .

In simple words, if we partition an acyclic path such that the nodes in each part are connected
by forward edges and the part themselves are connected by back edges, then each of these parts in
a span. It is easy to see that if an acyclic path containsd back edges, then it can be partitioned into
d+ 1 spans. This is illustrated as follows,

S(1,1), S(1,2), . . . , S(1,k1)︸ ︷︷ ︸, S(2,1), S(2,2), . . . , S(2,k2)︸ ︷︷ ︸, . . . , S(d+1,1), S(d+1,2), . . . , S(d+1,kd+1)︸ ︷︷ ︸
Here, each underbrace indicates a span with spani havingki nodes andd + 1 such spans.S(i,j)

is thejth node in theith span. The spans are connected by back edges so that each edge of the form
S(i,ki) → S(i+1,1) is a back edge.

Now to find the heuristic node listing for a given reducible flow graph, we first find all the acyclic
paths in that flow graph and divide each of the paths into spans. The node listing consists ofd + 1
levels, one for each span, each level being a set. When adding the pathP to the partially constructed
node listing, we add the first span inP to level 1 in the node listing, add the second span inP to
level 2 and so on. In other words, we add each span to the corresponding level. After all the paths are
processed, we list the nodes in level 1 in their acyclic ordering, followed by those in level 2 and so
on. The heuristic node listing constructor is showing in Algorithm 4.

1: Let NLi, 1 ≤ i ≤ d+ 1 be an initially empty set for level i ;
2: for Each acyclic path P in G do /* Process each acyclic path */
3: d := depth of the path P ;
4: for i := 1 to d+ 1 do /* Process each span */
5: S := Span i of path P ;
6: NLi := NLi ∪ S ;
7: end for
8: end for

/* Print the node listing */
9: for i := 1 to d+ 1 do

10: print nodes in NLi in acyclic order ;
11: end for

Algorithm 4: Heuristic Node Listing Constructor

In the program “Exe” given by Dr. Khedker as well as the programheuristic, each acyclic path
P in the flow graph is processed in thereverseorder i.e. the highest span is first added, then the
next highest span and so on. There is really no necessity of this reverse processing as it does not
always reduce the length of the heuristic listing. Also, the processing of the paths in the reverse order
increases the complexity of the program.

As a result, we have devised a new algorithm for finding the heuristic node listing which we
call as thesimplified heuristics. This is a straightforward algorithm which processes each path in the
normal order, adding the lowest span first, then the next one and so on. This simplifies heuristic has
been implemented assheuristicand the wrapper shell scriptExe.sh.



4.7 Majority Merge Heuristics 23

4.7 Majority Merge Heuristics

In this section, we state another algorithm for finding the node listings for flow graphs. This is a
general algorithm and does not depend upon the properties of the graph for finding the node listing.
It is a heuristic for a generalShortest Common Supersequenceproblem. In fact, the problem of
constructing a node listing is the problem of constructing a shortest common supersequence where
the strings are the paths in the graph.

TheMajority Mergealgorithm builds a node listing starting from an empty node listing as fol-
lows: It looks for the first node of every path in the graph, appends the most frequent node sayn
to the partially constructed node listing and then removes noden from the front of the paths. This
process is repeated until all the paths in the graph are exhausted. Thus, the algorithm for majority
merge is as in Algorithm 5.

1: L = φ;
2: while all paths not exhausted do
3: for all nodes n do
4: frequency(n) = 0;
5: end for
6: for all paths p do
7: Increase the frequency of the front node of p by 1;
8: end for
9: maxNode = Node with the maximum frequency;

10: add node maxNode to the end of the node listing L;
11: for all paths p with maxNode as the front node do
12: Delete the front node of p;
13: end for
14: end while

Algorithm 5: Majority Merge

This majority merge algorithm has been implemented as the programmmheuristicsand works
as well as the other heuristics.

❑ ❑ ❑



II
NEW RESEARCH AND

THEORETICAL RESULTS



CHAPTER 5
Density of a Graph

In this chapter, we will introduce the concept of the density of a graph, methods of finding out density
of the given graph and implications of the density towards lengths of node listings.

5.1 Definitions

Definition 5.1 (Density of A Node Listing) The density of a node listingL is defined as the
maximum number of times a node is repeated in that node listing and is denoted asδL.

Thus, ifC0, C1, . . . , Ck−1 is the number of times nodesn0, n1, . . . , nk−1 respectively appear in
L, then

δL = max(C0, C1, . . . , Ck−1)− 1.

Definition 5.2 (Density of a Graph) Thedensity of a graphG is defined as the minimum of the
densities of all the node listings for that graph.

Thus, if (L0, L1, . . . , Lk) is the set of all the node listings of a flow graphG and the respective
densities of these node listings are(δ0, δ1, . . . , δk), then the densityδ of G is given by,

δ = min(δ0, δ1, . . . , δk)

It can be easily seen that if the density of a graph isδ, then there exists a node listing for that
graph in which some node appearsδ + 1 times and no node appears more thatδ + 1 times. In the
worst case, it may be the case that all then nodes in the graph appearδ + 1 times in the node listing.
Thus, ifδ is the density of a graphG, then there exists a node listing ofG whose length is,

L ≤ (δ + 1)n

Thus, the density of a graph gives us an upper bound on the length of the node listing. Many a
times, not all nodes in the flow graph appearδ + 1 times in the node listing. So the actual length of
the node listing may be less than the upper bound of(δ + 1)n.
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5.2 Maximum Density and Length of the Node listing

First, let us see an extract from the paper “Node Listings applied to Data Flow Analysis” by K.
Kennedy [22]. It states that,

Result 5.1 For any flow graph there exists a node listing of length≤ n2 wheren = |N |, whereN
is the set of nodes of the flow graph.

Proof:
Supposex1, x2, . . . , xn be all the nodes of the graph. Then,

l = (x1, . . . , xn, x1, . . . , xn, . . . , x1, . . . , xn)

with n repetitions of(x1, . . . , xn) is certainly a node listing. �

We make the above result stronger by the following statement:

Result 5.2 For any (reducible or irreducible) flow graph, there existn node listings (wheren is the
number of nodes in the flow graph). These node listings are:

• xn, (x1, . . . , xn), (x1, . . . , xn), . . . , (x1, . . . , xn)

• (x1, . . . , xn), xn−1, (x1, . . . , xn), . . . , (x1, . . . , xn)
. . .
. . .
. . .

• (x1, . . . , xn), (x1, . . . , xn), . . . , (x1, . . . , xn), x1

In all these node listings, there aren− 1 repetitions of(x1, . . . , xn). So, the maximum length of node
listing isn2 − n+ 1. Also, maximum value of density of graph isn− 1.

Proof:

1. We consider only complete graph withn nodes as it will have the maximum possible length of
the node listing as well as the maximum possible density amongst the graphs withn nodes.

2. In a complete graph withn nodes, each acyclic path will consist of exactlyn nodes and there
will be n! such paths (including the paths starting with forward edges).

3. For each acyclic path except the path(xn, . . . , x1), there exist two consecutive nodes(xj, xk)
such thatj 6= k, 1 ≤ (index of nodexj in that acyclic path)≤ n − 1, and (xj, xk) is a
subsequence of(x1, . . . , xn).

4. So, all acyclic paths, except the path(xn, . . . , x1) is covered in the list of nodes

L = (x1, . . . , xn), . . . , (x1, . . . , xn),

where there aren− 1 repetitions of(x1, . . . , xn).
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5. To cover the path(xn, . . . , x1), either the nodexn or nodexn−1, . . . or nodex1 is to be inserted
at appropriate position inL. Depending on which node is inserted, one of the above mentioned
node listing will be generated. The length of the node listing will ben2− n+ 1, and density of
graph will ben− 1.

Hence proved. �

Result 5.3 If d is the depth of a reducible flow graph, then the density of that flow graph isδ ≤ d.

Proof:
We know that if we repeat the depth first order (i.e. the acyclic order) of a reducible flow graphd+ 1
times, then the resulting sequence is a node listing for the flow graph. In this sequence, each node
appearsd+ 1 times. So, each node is repeatedd times. Hence, for reducible flow graphs, the density
(δ) is given by

δ ≤ d. �

5.3 Effect of Repetitions on the Flow Graph Structure

Result 5.4 If the structure of a flow graph is repeated twice, with the appropriate addition of back
edges and the forward edges, the density may not increase.

Proof:
Right now, no proof is available for the statement ‘the Density will never increase in the above case’.
But many counter examples are available for the statement ’the Density will always increase in the
above case’. One of the counter examples is:
1 2 ;
2 3 ;
3 4 ;
4 5 8 ;
5 6 ;
6 4 7 ;
7 5 8 ;
8 2 9 ;
9 10 13 ;
10 11 ;
11 9 12 ;
12 10 13 ;
13 3 . �

Result 5.5 If the structure of a flow graph is repeated four times, with the appropriate addition of
back and forward edges, the density may increase.

Proof:
Right now, no proof is available for the statement ‘the Density will always increase in the above
case’. But an examples is available for supporting the statement ‘the Density may increase in the
above case’. The example is:
0 1 ;
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1 2 ;
2 3 ;
3 1 4 5 ;
4 2 5 ;
5 1 6 10 ;
6 7 ;
7 5 8 9 ;
8 6 9 ;
9 1 10 ;
10 1 11 ;
11 12 ;
12 13 ;
13 11 14 15 ;
14 12 15 ;
15 10 11 16 ;
16 17 ;
17 15 18 19 ;
18 16 19 ;
19 1 11 . �

5.4 A Sureshot Method of Increasing the Density

5.4.1 Some definitions

Definition 5.3 (RNL) A restricted node listing (RNL)for a regionR is a sequence of nodes in
R (with possible repetitions) such that every acyclic path inR that ends at an exit node ofR is a
subsequence thereof. (More precise definition needed)

Definition 5.4 (ARNL) An acyclic restricted node listing (ARNL) for a regionR is an RNL ofR
such that the acyclic ordering ofR is a subsequence thereof.

Thus, for every regionR, we associate with it:

• An Acyclic Ordering (AO)

• A Restricted Node Listing (RNL)

• An Acyclic Restricted Node Listing (ARNL)

Result 5.6 Given a minimal node listing for a reducible flow graphG, for each noden :

1. There exists at least one acyclic path beginning withn such that while mapping that path in the
node listing, we must mapn to the first occurrence ofn in the node listing.

Proof:
If there does not exist any path in which the first occurrence ofn is not mapped, then removing
the first occurrence ofn from the node listing yields a shorter node listing. This contradicts the
fact that the given node listing is minimal. �
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2. When mapping all acyclic paths beginning with noden, we can always map the starting node
n to the first occurrence ofn in the node listing.

5.4.2 A Sureshot Method of Increasing the Density

Result 5.7 From a graphG of densityδ(δ > 0), we can obtain a graph of densityδ + 1, if we
replace each node ofG by a region having RNL in which at least one node appears twice.

We can construct the node listing for the new graph from the minimal node listing of the old
graph by:

1. Replacing each node that occurs exactly once by its ARNL.

2. For a node that appears more than once, replace the very first occurrence of the node by its
ARNL, unless the node is the first node in the node listing, in which case we replace it by its
RNL, and all other occurrences of the node by its AO.

0

1

2

Figure 5.1: A “region” with RNL having two repetitions

Example 5.1 Figure 5.1 shows a “region” with a restricted node listing in which node1 appears
twice. This region has a single “exit” node viz. node0 . The various “listings” associated with the
region are

ARNL 0 1 2 1 0

RNL 1 2 1 0

AO 0 1 2

Thus, replacing each node is a graph of densityδ with the above region will give us a graph of
densityδ + 1.
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5.5 Densities of Spiral Graphs

It is experimentally observed that for a spiral graph ofn nodes in which all the nodes are added using
rule (2b), the density is given by the expressionδ = dlog2ne

Result 5.8 For a 2b-spiral graph havingn nodes, the density isdlog ne, wheren is the number of
nodes.

Proof:
We define a2b-Spiral Graph ofn nodes as a Spiral Graph ofn nodes in which all the nodes are added
using the rule2b, as mentioned in [4]. We prove this statement by induction.

Basis of Induction
The above statement is true forn = 1 to 9. The densities of these graphs are as shown in following
table.

n Density dlog ne
1 0 0
2 1 1
3 2 2
4 2 2
5 3 3
6 3 3
7 3 3
8 3 3
9 4 4

Induction Step
Assume that a2b-Spiral Graph havingn− 1 nodes has the densitydlog n− 1e.
Hence
For a spiral graph havingn nodes, sayG, in which nodes are added in ordern − 1, . . . , 0, we can
split the graph into 2 graphs, each having approximatelyn/2 nodes and each is a2b-spiral graph. The
first graphG′ has the nodes added in ordern− 1, . . . , dn/2e and the secondG′′ has the nodes added
in orderbn/2c, . . . , 0.

Let

A′ = acyclic ordering of nodes inG′

B′ = acyclic ordering of nodes inG′′

A = node listing ofG′

B = node listing ofG′′

ThenAB′A′B is always a node listing of G, as it can be easily seen that this covers all the acyclic
paths. This is illustrated in the Figure 5.2 �

Thus, it can be seen that if a reducible flow graph has a subgraph which is a spiral graph ofk
nodes, the density (δ) of that reducible flow graph isδ ≤ dlog ke
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G′′

G′

Only 1 forward edge
fromG′′ toG′ Many backedges from

G′ toG′′

Figure 5.2: A 2b-spiral graph split into two subgraphs:G′ andG′′

Result 5.9 For any reducible flow graph, havingn nodes, the upper bound of density is given by
dlog ne.

Proof:
Among all maximal rfgs ofn nodes, the density of the2b-spiral graph will the largest, as it has the
maximum number of acyclic paths, which cover all the nodes and also there are maximum number of
back edges.

As stated in the previous result, the density of2b-spiral graph havingn nodes isdlog ne. So, the
upper bound of the density on any reducible flow graph isdlog ne. �

5.6 Two Methods of Finding Density

To find the density (δ) of any reducible flow graph (or for that matteranygraph), we can proceed by
the following two methods

• Assume an “initial” traversal in the acyclic order over the graph. This “initial” traversal is used
to initialize the data flow variables. Now, since this “initial” traversal contains the part of every
acyclic path in the flow graph up to but not including the first back edge in the path, we now
need to consider only those acyclic paths in the flow graph that begin with a back edge. We
find all the acyclic paths in the flow graph that begin with a back edge, ignore the first nodes in
these paths (as these nodes will be covered in the initial traversal) and then try to “fit” the path
so that we get minimum repetitions of nodes. We call the density of a flow graph obtained by
this method ashigher densityof the flow graph and denote it byδh. It is observed that in case
of spiral graphs with all nodes added using rule (2b), the higher density is given by

δh = dlog ne
However, there seems to be a “catch” in this method. If we keep aside the “initial” traversal for
initialization, then the information will not flow along the initial acyclic parts of the paths. This
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may givewrong data flow analysis. The only remedy to this problem seems to be to keep the
initialization of data flow variables aseparatestep from the initial traversal. Only then can we
guarantee that correct data flow analysis will take place.

• As we saw earlier, it seems that initialization of data flow variablescannotbe comfortable
incorporated into the initial traversal of the graph. Initialization necessarily must be a separate
step carried out prior to the data flow analysis. In that case, we canget rid of the initial traversal.
That is, we find all the acyclic paths in the given flow graph (both that begin with a back edge
and those that do not begin with a back edge). Then we try to “fit” the paths so as to get
minimum repetitions of nodes. We call the density of the flow graph obtained by this method
as thelower densityof the flow graph and denote it asδl. It is observed that in case of spiral
graphs in which all the nodes are added using rule (2b), the lower density of the graph is given
by

δl = blog nc
⇒ δl ≤ log n.

Also, it is observed that in case of a spiral graph in which all the nodes are added using rule
(2b), if the number of nodes is2n, then

δl = δh = n

❑ ❑ ❑



CHAPTER 6
Maximal Reducible Flow Graphs

In the paper “Node Listing for Reducible Flow Graphs,” [4] Aho and Ullman define a special type
of a reducible flow graph called thespiral graph. At first, it seems that spiral graph is the “largest”
possible reducible flow graph for the given number of nodes since the addition of any additional edge
to a spiral graph renders it irreducible. So, it may appear that every reducible flow graph ofn nodes
is a subgraph of some spiral graph ofn nodes. In the next section, we examine the exact relationship
between reducible flow graphs and spiral graphs. In particular, we show that there exists reducible
flow graphs that are not subgraphs of any spiral graphs. Also, in further sections, we show that apart
from spiral graphs there exists many other reducible flow graphs that are “largest” i.e. addition of
any additional edge renders them irreducible. We then formalize this notion in terms ofmaximal
reducible flow graphsand examine their properties in later sections. These graphs serve as a new
method of synthesizing reducible flow graphs that is general and is based on the dominator tree of the
flow graph. These graphs were discovered and their properties studied by Rahul U. Joshi.

6.1 Motivation For Maximal Reducible Flow Graphs

6.1.1 An Auxiliary Result

Result 6.1 If a reducible flow graphG = (N,E, n0) is a subgraph of another reducible flow graph
G′ = (N,E ′, n′0) andR′ = (N ′R, E

′
R, hR) is a region inG′, then the subgraph ofG containing nodes

N ′R and all the edges between them is also a region with headerha, that is,R = (N ′R, N
′
R × N ′R ∩

E, ha) is a region.

Proof:
Let us assume thatR = (N ′R, N

′
R × N ′R ∩ E, ha) is not a region. Therefore, there exist at least two

nodes, sayna, nb ∈ N ′R, such that there is an edge from a node outsideR′ to na andnb, that is, there
exists edgesp→ na andq → nb such thatp, q /∈ N ′R.

Now, if na = ha, then there cannot exist the edgeq → nb inG′ asR′ = (N ′R, E
′
R, hR) is a region.

In a similar fashion, whennb = ha and whennb 6= ha andnb 6= ha, we contradict the fact thatR′ is a
region with headerha. Thus, we can say that there exists one and only one node inR for which there



6.1 Motivation For Maximal Reducible Flow Graphs 34

can exist an edge from a node outsideR. Furthermore, thus node is exactly the headerha of region
R′. �

Thus, we have proved that ifG is a subgraph ofG′ andR′ is a region inG′, then the subgraph of
G containing the nodes inR′ and all the edges between them is also a region with the same header as
R′.

6.1.2 Reducible Flow Graphs and Spiral Graphs

Theorem 6.1 LetG = (N,E, n0) be a reducible flow graph withk > 1 nodes. Then the necessary
and sufficient condition forG to be a subgraph of some spiral graph onk nodes is that there exists a
set of disjoint regionsR1, R2, ..., Rk, whose union includes all the nodes inG, having the following
properties:

1. R1, R2, ..., Rk are all singleton.

2. There exists a sequence of regionsS1, S2, ..., Sk such that

(A) S1 = R1,

(B) for i > 1, Si consists ofSi−1 andRi, with one the predecessor of the other,

(C) Sk isG.

Proof:
Let us first prove the sufficiency condition. Consider a reducible flow graphG = (N,E, n0) which
satisfies the condition stated above. As each of the regionsR1, R2, ..., Rk is singleton, it consists of
a single node. By a construction similar to Aho and Ullman, a spiral graph of whichG is a subgraph
can be obtained by adding the nodesR1, R2, ..., Rk in the following sequence:

• NodeR1 is added using rule (1).

• If Si−1 is the predecessor ofRi,Ri is added using rule (2a).

• if Ri is the predecessor ofSi−1,Ri is added using rule (2b).

Let us now prove the necessity condition. Let us assume a reducible flow graphG = (N,E, n0)
of k > 1 nodes which is a subgraph of some spiral graph formed by adding nodes ofG in the order
R1, R2, ..., Rk.

Let S ′1 = R1. Now consider the spiral graph formed by adding the nodesR1, R2, . . . , Ri−1. Let
the header of this spiral graph beRj, 1 ≤ j ≤ i − 1. ThereforeSi−1 = (R1, R2, . . . , Ri−1), header
= Rj, 1 ≤ j ≤ i − 1. From Result 6.1, the subgraph ofG having nodes (R1, R2, . . . , Ri−1) is also a
region with headerRj. Let us call this regionS ′i−1.
∴ S ′i−1 = Region with headerRj.

Now, if the nodeRi is added to the spiral graph using rule (2b), we state thatRi is the prede-
cessor ofS ′i−1 is G. For this, consider the spiral graphSi−1 = (R1, R2, . . . , Ri−1, Ri), header =Ri

formed by adding toSi−1 the nodeRi using rule (2b). Clearly the subgraph ofg containing all nodes
(R1, R2, . . . , Ri−1, Ri) and the edges between them is a region. Now, let this region be split into two
regions(S ′i−1, Ri). Clearly, eitherS ′i−1 is the predecessor ofRi or Ri is the predecessor ofS ′i−1. If
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S ′i−1 is the predecessor ofRi thenRj is the header ofSi which contradicts the fact thatRi is the
header ofSi. ThusRi must be the predecessor ofS ′i−1.

Similarly, if nodeRi is added toSi−1 using rule (2a), we can prove thatSi−1 is the predecessor
of Ri. Now applying this argument inductively toSi, Si−1 etc. we can see thatG can indeed be
partitioned into regionsS ′1, S

′
2, . . . , S

′
k such that

• S ′1 = R1,

• for i > 1, S ′i consists ofS ′i−1 andR′i, with one the predecessor of the other

• S ′k isG.

Thus, we have proved both the necessity and sufficiency conditions for the theorem. �

Note Thus, we can see that a spiral graph is not a “maximal” reducible flow graph, in the sense
that it does not contain all other reducible flow graph having the same number of nodes.

Example 6.1 Figure 6.1 shows a reducible flow graph of4 nodes which is not a subgraph of any
spiral graph of4 nodes.

1 2

3

0

Figure 6.1: A reducible flow graph which is not a subgraph of any spiral graph.

6.1.3 More Motivations

In section 6.1.2 we have shown that spiral graphs are not the “largest” class of graphs. To gain further
motivations for maximal reducible flow graphs, we now derive some more results.

Result 6.2 In any reducible flow graph, if nodem dominates noden, then addition of the edge
n→ m will keep the graph reducible.

Proof:
Since nodem dominates noden, the edgen → m added to the graph is a back edge. Now, by
definition, a flow graph is reducible if and only if removal of all the back edges in the graph gives
an acyclic graph. Since the original flow graph was reducible and we are adding a back edge, in the
newly formed graph too, removal of all back edges will give an acyclic graph. Hence, the addition of
the back edgen→ m keeps the graph reducible. �

Result 6.3 In any reducible flow graph, if two nodesm andn have the same immediate dominator
(i.e. they are the children of the same node in the dominator tree) withm as the left sibling ofn, then
addition of the edgem→ n keeps the graph reducible.
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Proof:
Let the common immediate dominator of nodesm andn bek. Let us consider that we add the edge
m→ n to the graph. Clearly, this edge is not a back edge asn does not dominatem. So, the edge is
a forward edge. We will first show that the addition of this edge does not change the dominator tree
of the flow graph. Addition of the edgem → n creates new path(s) from the initial noden0 of the
flow graph ton. These paths are all the paths fromn0 to m followed by the edgem → n. Sincek
dominatesm, each of these newly formed paths fromn0 to n containk. Hence, addition of the edge
m→ n keeps the dominance relations same as before.

We will now show that the addition of the edgem→ n will keep the graph reducible. We know
that in the newly formed graph, the edgem → n is a forward edge. Let us assume that the newly
formed graph is not reducible. Thus, there is a cycle consisting of only forward edges in the graph.
Clearly, this cycle must contain the edgem → n. Thus, there is a path in the original flow graph
from n to m containing only forward edges. This means thatn is beforem in the acyclic ordering
of the original flow graph. This contradicts the fact thatm is a left sibling ofn. Thus our original
assumption is wrong. Thus, the flow graph formed by the addition ofm→ n is reducible. �

Result 6.4 In any reducible flow graph, if there is an edge from a nodem or any of its descendents
to a noden wherem andn have the same father in the dominator tree, then addition of the edge
n→ m will make the graph irreducible.

Proof:
Let us assume that there is an edge from a nodek to noden, wherek can bem or any of its descen-
dents andm andn are the children of the same node, sayd in the dominator tree. Clearly, there is a
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Figure 6.2: The (✶) Subgraph

path fromd tom,sincem is a child ofd. Let this path be denoted asP1. See Figure 6.2. Similarly,
there is a path fromd to n denoted asP2. Now, path fromm to k and the edgek → n constitute
a path fromm to n, sayP3. Also, the edgen → m constitute a path, sayP4 from n to m. It can
now be easily seen that the subgraph of the original graph containing the noded, m andn form a
(✶) subgraph, as defined in [32]. Now, according to the (✶) Characterization Theorem in [32], a flow
graph is non reducible if and only if it contains a (✶) subgraph. Thus, the newly formed flow graph
is irreducible. �

Result 6.5 In any reducible flow graph, ifm is any ancestor ofn other that its father , then the
addition of the edgem → n will either make the graph irreducible or change the dominator tree of
the graph.
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Proof:
Let d be the father ofm in the dominator tree. Thus, every path from the initial noden0 to n contains
d (and alsom asm dominatesd). Now if we add the edgem → n, then we get additional path(s) in
the flow graph fromn0 ton containing paths fromn0 tom followed by the edgem→ n. Sinced does
not dominatem, there exists at least one path fromn0 to m not containingd. This path along with
the edgem → n forms a path fromn0 to n not containingd. Thus, in the newly formed graphd is
no longer the dominator ofn. Thus addition of the edgem→ n changes the dominance relationship.
See Figure 6.3.

m

n

d

n0

Figure 6.3: Addition of an edgem→ n

Furthermore, if there was a back edgen→ d in the original flow graph, that back edge no longer
remains a back edge in the new flow graph. This back edge along with the edged→ n forms a cycle
in the flow graph containing only forward edge, making the flow graph irreducible. �

6.2 Maximal Reducible Flow Graphs

Definition 6.1 (Maximal Reducible Flow Graph) A maximal rfgof n nodes is an rfg ofn nodes
such that addition of any additional edge in that rfg renders it irreducible.

It can be seen that a spiral graph is a maximal rfg (Result 7.1). However, spiral graphs are not
the only types of maximal rfg’s.

Let us first consider the method of finding a maximal rfg having a given dominator tree. We
find the maximal rfg having the given dominator tree by constructing the maximal rfg edge by edge
adding edges using the following rules:

1. From a node saym, add an edge to all the ancestors ofm in the dominator tree.

2. From a node saym, add an edge to all the children ofm.

3. For all the node pairs(m,n) where bothm andn have the same father, either add the edge
m → n or add the edgen → m but not both. In any case, if the edgem → n is added, also
add an edge from all the descendents ofm to n i.e. add edge from all the nodes in the subtree
rooted atm to n.
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4. In other words ifn1, n2, . . . , nk all have the same father, then there exists an ordering among
these nodes say(n1, n2, . . . , nk) such that there is an edgeni → nj,∀j > i. Further, for each
edgeni → nj there is an edge from all the descendents ofni to nj. Thus, we can say that there
is no edge of the formni → nj, j < i. Thus, it can be seen that among the immediate children
of a node there exists a “natural” ordering. We will define the “natural” order formally a little
later.

5. Since self loops of the formm → m do not contribute to the reducibility or non reducibility,
for all nodes, saym, add the self loopm→ m.

In the above rules, the edges added using rule (1) and (5) areback edges, the edges added using
rule (2) are theforward edgesand all the other edges arecross edges. Addition of any more edge to the
graph will render it irreducible. So our construction indeed constructs a maximal rfg. The definition
of a maximal reducible flow graph suggests that the dominator tree of the maximal reducible flow
graph and hence of any reducible flow graph is an ordered tree. Ifn1, n2, . . . , nk are the sons of any
node, then the ordering of the nodes is given by(n1, n2, . . . , nk) such that condition (4) is satisfied.
We calln1 the leftmost child andnk as the rightmost child.

To find the maximal rfg of which the given rfg is a subgraph, we first find its dominator tree and
go on adding edges using the above rules. The only ambiguity about the addition of an edge is rule
(3), where we may have to decide which of the edgesm → n or n → m is to be added. However,
this ambiguity can also be resolved easily by applying rule (4). We find the acyclic ordering of the
original graph and for each node, find the ordering of its immediate children such that the children
are ordered in the same order as they appear in the acyclic ordering of the original graph. Once this
ordering is formed, we add edges according to rule (4).

Example 6.2 As an example, Figure 6.4 shows a maximal reducible flow graph. The dark edges
corresponding to the dominator tree from which the maximal reducible flow graph was constructed.
The dotted edges are the edges added using rule (1) and the dash–dot edges are the edges added using
rule (3). For simplicity, we have not shown the self loops.
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Figure 6.4: A maximal reducible flow graph

Definition 6.2 A “natural” ordering among the immediate children of a node in the dominator tree
of any reducible flow graph is defined as an ordering among the nodes such that rule (4) in the
definition of a maximal reducible flow graph is satisfied.
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All the edges that are considered in rule (4) are forward edges. So to satisfy the rule (4), the
children of any node must be ordered in the same order in which they appear in the acyclic ordering
of the original graph. This “natural”ordering turns out to be simply the acyclic ordering of the children
of the node.

Result 6.6 The first node visited during the postorder traversal of the dominator tree has a single
predecessor in the flow graph obtained from the maximal reducible flow graph for that dominator
tree by the application of aT1 transformation.

Proof:
We first define thepostordertraversal of the dominator tree, as follows,

1. Visit the children of the node in their “natural” order, and

2. Visit the node

Now consider the first node visited during the postorder traversal of the dominator tree. From the
definition of postorder traversal, it is clear that this node is a leaf node of the dominator tree. Also, we
can say that it is the leftmost child of some node, or else, its left-sibling will be visited first and will
appear first in the postorder traversal. Since each time, the siblings of a node are visited in left to right
fashion, we can then say that the first node visited during the postorder traversal is that descendent
of the root of the dominator tree that is reached after traversing the leftmost edges until we can go no
further. Figure 6.5.

n

h

m

Figure 6.5: First node visited during postorder traversal

Now, if n is this node, then the only edges to noden added during the construction of a maximal
rfg is m → n, wherem is the father ofn, added by rule (2) and the self loopn → n added by rule
(5). For a leaf node, we cannot add any edge to it by rule (1) and also forn we cannot add any edge
to it by rules (3) and (4) sincen or any of its ancestors do not have left-siblings.

Now, when we apply aT1 transformation to the maximal rfg for the dominator tree the edge
n→ n will be deleted. Thus, the only edge in the resulting flow graph to the noden will be the edge
m→ n. Thus, in the resulting flow graph,n has a single predecessorm. �

Result 6.7 Given a dominator treeD, the flow graph obtained by the application of the above rules
is indeed reducible.
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Proof:
We show that the flow graph obtained from above construction is reducible by showing that it can be
reduced into a single node by repeated application ofT1 andT2 transformations.

Consider that we construct the maximal rfg for the given dominator treeD by the application
of the above rules. Now letn be the first node in the postorder traversal ofD, as defined in Result
6.6. Now from result 6.6, we know that after the application of aT1 transformation,n has a single
predecessor. So, we can now apply aT2 transformation to the flow graph in whichm consumesn.
After the consumption ofn bym, in the resulting flow graph (which will also be a maximal rfg), ifm
has any more children, the next left sibling ofn in the old dominator tree will now be the first node to
be visited during the postorder traversal. Ifm does not have any more children, thenm will now be
the first node visited during the postorder traversal. In any case, in the resulting maximal rfg, we can
again apply the above argument and eliminate the first node. In this way, we go on applying alternate
T1 andT2 transformations, each time eliminating the first node visited during the postorder traversal.
Thus, we can always reduce any maximal rfg into a single node by repeated alternate applications of
T1 andT2 transformations. Hence, maximal rfg’s are indeed reducible. �

Result 6.8 Given a dominator treeD, the flow graph obtained from the above rules is indeed max-
imal.

Proof:
We know that the addition of any additional edge in a maximal rfg renders it irreducible. Let us
suppose thatG is the flow graph obtained fromD by the above rules. The only edges that were not
added during the construction ofG fromD are as follows:

1. An edge from a node saym to its descendents other than its children.

2. An edge from a node sayn or its descendents to its left-sibling or any descendent of its left
sibling.

3. An edge from a node to any of the descendents of its right sibling.

We show that the addition of any of these edge makes the flow graph irreducible. Consider the first
class of edges, i.e. from a node to its non-immediate descendent. We have shown in Result 6.5 that
addition of such an edge makes the flow graph irreducible.

Now consider the second class of edge. Figure 6.6.

nm

pq

Figure 6.6: The edgep→ q

Let us add an edge from some descendentp of n orn tom, wherem is a left sibling ofn. Clearly,
the edgep → m is not a back edge asm does not dominatep. So the edgep → q is a forward edge.
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Now the edgem→ n (added to the max. rfg using rule (4)), the path fromn to p (added to the max.
rfg using rule (2)), and the edgep→ m form a cycle consisting of only forward edges. Thus the flow
graph obtained by the addition of the edgep → m is irreducible. If we add the edgep → q, then
the edgep→ q forms a path from a node outside the region consisting ofm and its descendents to a
nodeq inside that region that does not contain the headerm. This violates the fact thatm dominates
q.

Now, in case of the third type of edges, an edgem → p will again contradict the fact thatn
dominatesp.

Thus, we have shown that the addition of all possible additional edges to a maximal rfg renders
it irreducible. Thus a maximal rfg is indeed a “maximal” rfg. �

Observation In a maximal reducible flow graph, if we traverse the edgem→ n then

1. if m→ n is a back edge, we reach a dominator ofm.

2. if m→ n is a forward edge, we reach an immediate ancestor ofm.

3. if m → n is a cross edge, we reach a node which is neither the dominator nor the immediate
child ofm.

Now, given a rfg ofn nodes, suppose we want to add one more node to it to give a rfg ofn + 1
nodes. Let us suppose that we want the dominator tree of the old graph to be the subtree of that of the
new graph. Thus, we want to add a new node without disturbing the dominator tree. There andn+ 1
ways to do so:

1. Add it as the header to the old dominator tree

2. Add its as the son of one of then nodes in the tree.

In any case, after the node is added, we can find the maximal rfg of the new graph using the
above rules.

The significance of a maximal reducible flow graph is that every reducible flow graph ofn nodes
is a subgraph of some maximal reducible flow graph ofn nodes. Thus, if we want to prove any
property of reducible flow graph, thenproving that property for maximal reducible flow graphs is
sufficient. Of course, the property must be such that if a certain graph has that property then every
subgraph of that graph has that property. Thus maximal rfg’s can be used to prove the upper and
lower bounds on the properties of reducible flow graphs. In our case, if the density of a graph isδ,
then every subgraph of it also has a densityδ. Thus, proving that the densityδ of every maximal
reducible flow graph is
δ ≤ blog nc
will be sufficient to prove that the density of every reducible flow graph is≤ blog nc.

Result 6.9 Given a dominator treeD, the number of different maximal reducible flow graphs cor-
responding to that tree are,∏k

i=1(Sni !)

where (n1, n2, . . . , nk) is the set of interior nodes in the dominator tree andSnj = number of
sons ofnj in the dominator tree.
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Proof:
Given an “unordered” dominator treeD, the number of “ordered” dominator trees corresponding to
D is∏k

i=1(Sni !)

which can be obtained by simple combinatorics. Since each ordered dominator tree corresponds
to one maximal rfg, the above quantity is also the number of maximal rfg’s corresponding to the
dominator treeD. �

Thus, it can be seen that corresponding to a dominator tree, there exists a large number of maxi-
mal reducible flow graphs.

Definition 6.3 (Reachability) A noden is said to bereachablefrom a nodem if n = m or there
is an edgem → n or there exists a nodek in the graph such thatn is reachable fromk andk is
reachable fromm.

Result 6.10 Each node in a maximal reducible flow graph is reachable from every other node.

Proof:
By definition of a reducible flow graph, in any flow graph each node is reachable from the initial node
n0. Now, by construction of a maximal reducible flow graph, for each noden in the flow graph, there
exists a back edgen → n0. Thus, the initial noden0 is reachable from every other node. Therefore,
by definition of reachability, every node in a maximal reducible flow graph is reachable from every
other node. �

Result 6.11 A depth first traversal of the dominator tree of a maximal reducible flow graph (and
hence of any graph) gives its acyclic ordering.

Proof:
Obvious �

Observation Thedagof a maximal reducible flow graph corresponding to the dominator treeD is
the flow graph obtained by adding edges using only the rules (2), (3) and (4). This is obvious because
the dag of a flow graph is a subgraph of that flow graph containing all the nodes and all the edges
except the back edges, as stated in Result 2.3.

Observation We know that in general, a flow graph can have more than one acyclic orderings.
However, in case of a maximal rfg, we anticipate that each maximal rfg will have a single unique
acyclic ordering. This can be easily seen by considering the following fact:

1. Find thedagof the flow graph. Its topological sort will give the acyclic ordering.

2. Initially, only the root node has no predecessor, so it is listed and then removed from the graph.
After that the only node that has no predecessor is the leftmost child of the root.

3. Once this leftmost child is removed, the only node that now has no predecessor is the leftmost
child of this node. If there is no leftmost child of that node, then the next right sibling is the
only node that has a single predecessor and so on.

Thus, during the topological sort of the dag of a maximal rfg, at each stage there is just one node
that can be listed next, giving a unique acyclic ordering. It is nothing but the depth first traversal of
the dag.
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6.3 Paths in Maximal Reducible Flow Graphs

Definition 6.4 (Redundant Paths) Given a listL of acyclic paths in a flow graph, the pathn1,
n2, . . . , nk is said to beredundantif there exist some other pathm1,m2, . . . ,mj such thatn2, . . . , nk
is a subsequence ofm2, . . . ,mj.

Thus, it can be seen that when considering the redundant paths, the first node is ignored. This is
because we will be considering all paths that begin with a back edge and also we assume an “initial”
traversal of the graph.

Definition 6.5 (Non Redundant List) A list L of acyclic path in a flow graph is said to benon-
redundantif no path in the listL is redundant.

Result 6.12 All non-redundant path in a maximal reducible flow graph that begin with a back edge
start at a leaf node of the dominator tree of the maximal reducible flow graph.

Proof:
We first prove that an acyclic path in any reducible flow graph that begins with a back edge cannot
contain any of the descendents of the first node of the path in the dominator tree. Let us assume that
there exists an acyclic path in the reducible flow graph that begins with the back edgem → n and
contains a descendantk of the first nodem in the path. First of all,n 6= m or else the path will not
be acyclic. So clearlyn is an ancestor ofm in the dominator tree asm → n is a back edge. Let the
portion of the acyclic path fromn to k beA. So we now have an acyclic pathmnAk. Now consider
a path from the initial noden0 of the graph (i.e. the root of the dominator tree) ton that does not
containm. Clearly, such a path does exist, or elsem dominatesn and sincem 6= n, m→ n will not
be a back edge. Let the path fromn0 to n beX. So, we can say thatm /∈ X. Now consider the path
n0XnAk as shown in Figure 6.7.

n0

m n k

X

A

Figure 6.7: Acyclic Path in a Flow Graph

Clearly,m /∈ X, m 6= n, m /∈ A andm 6= k. Also m 6= n0 as there cannot be a back edge
in a reducible flow graph that begins with the initial noden0. Thus the pathn0XnAk is a path from
the initial noden0 to nodek that does not contain the nodem. This contradicts the fact thatk is a
descendant ofm in the dominator tree i.e. the fact thatm dominatesk. Thus our original assumption
about the existence of such a path is wrong. Therefore, we can say that any acyclic path in a reducible
flow graph that begins with a back edge cannot contain any of the descendents of the first node in the
path.

Now, consider an acyclic pathL in a maximal reducible flow graph that begins with a back
edge and whose first node, saym is not a leaf node. Sincem is not a leaf node, it has at least one
descendant. Letk be some descendant ofm such thatk is a leaf node. Now by the above result, we
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can say thatL does not containk. Secondly, by definition of a maximal reducible flow graph there
exist a back edgek → m in the maximal reducible flow graph. Now consider the pathkL, as shown
in Figure 6.8.

Remaining Path

k

m

Remaining Tree

n

Figure 6.8: Acyclic Path Beginning With a Leaf Node

Clearly this is an acyclic path that begins with a leaf node of the dominator tree. Also, it is
obvious that the pathL becomes redundant in the presence of pathkL. Since the nodem and the path
L was chosen arbitrarily, we can say that for every acyclic path in a maximal reducible flow graph
that begins with a back edge and whose first node is not a leaf node, there exist some acyclic path
that begins the with a leaf node of the dominator tree in whose presence, the original path becomes
redundant. Therefore, we can conclude that an acyclic path that begins with a back edge and whose
first node is not a leaf node of the dominator tree cannot be present in the list of no-redundant paths.
As a result, all the non-redundant paths in a maximal reducible flow graph that begin with a back
edge start at a leaf node of the dominator tree. �

Result 6.13 A subgraph of a maximal reducible flow graph consisting of a node all its descendents
and the edges between them is a region.

Proof:
We know that a region is a subgraph of a flow graph such that every path from the initial node to a
node in the subgraph contains the header of the region. Thus, in case the the subgraph is the subgraph
consisting of a nodeh and all its descendents, then it follows by definition of dominance that every
path from the initial node to a node in the subgraph will be throughh. As a result, we can say that
a subgraph of a maximal reducible flow graph consisting of a node and all its descendents in the
dominator tree form a region. �

Result 6.14 In a maximal reducible flow graph, if we traverse the cross edgem→ n, then the path
from that point onwards, the path will not contain any of the descendents ofm.

Proof:
Consider an acyclic path containing the cross edgem → n. Clearly,n is not a child ofm. Also, n
is not any other descendant ofm by definition of a cross edge. Thusn is a certain node outside the
region formed bym and its descendants. So, we know that any path from outside a region to any
node of a region must contain the header of the region. Thus if the path contains some descendant of
m, it must also containm somewhere aftern. This contradicts the fact that the path is acyclic. Thus
our assumption is wrong. �
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Now, we have already proved that an acyclic path beginning with a back edge cannot contain
any descendents of the first node of the path. We can unify these results as follows.

Result 6.15 An acyclic path in a maximal reducible flow graph that begins with either a back edge
m→ n or a cross edgem→ n cannot contain any descendents ofm.

6.4 Regions in Maximal Reducible Flow Graphs

In this section we examine some properties of regions with respect to the maximal reducible flow
graphs.

Result 6.16 In any reducible flow graph, if we replace a nodek by a regionR, then the dominator
tree of the new flow graph can be obtained by replacing the nodek in the dominator tree of the old
graph by the dominator tree of the regionR.

Proof:
Obvious �

Result 6.17 Let h be some node in the dominator tree of a maximal reducible flow graph and
suppose we are interested in finding a regionR with headerh. Let k be some child ofh in the
dominator tree. Then, if we include nodek in R, the entire subtree of the dominator tree rooted atk
must be included inR.

Proof:
Let us suppose that we add a nodek to the regionR with headerh. k is the child ofh in the dominator
tree. LetT be the subtree of the dominator tree ofR rooted atk. See Figure 6.9.
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Figure 6.9: Region consisting the child of the header

Now, from the paper of Aho and Ullman [4], if there is an edgem→ n in the flow graph andn
is in a regionR, n 6= h, h being the header of the regionR, themm is inR.

Now, in a maximal reducible flow graph, there is a back edge from all the descendents of a
node to that node by construction. Thus, in this case, there exists edgesm → k, ∀m ∈ T . Also,
k ∈ R, k 6= h. So applying the above result,m ∈ R∀m ∈ T . Thus the subtree of the dominator tree
rooted atk has to be included inR. �

Result 6.18 Let h be some node in the dominator tree of a maximal reducible flow graph and
suppose we are interested in finding a regionR with headerh. Letk be some child ofh other than
the leftmost child. Then, if we includek in R, we have to include all the left-siblings ofk in R.
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Proof:
Let us suppose that we includek in regionR. Now let (k0, k1, . . . , kn−1) be the left siblings ofk
in the dominator tree. Now by construction in a maximal reducible flow graph, there exists edges
ki → k, 0 ≤ i ≤ n− 1. So, by the argument in [4] all the left siblings ofk have to be included inR.

Now, by virtue of Result 6.17, when we include a nodek in the region,k 6= h, then all the
descendents ofk also have to be included in the region. Thus, when we include a nodek in the
region, we have to include all the left siblings as well as the subtrees rooted at them in the region.�

Definition 6.6 (Feasible Region) Let R = (N,E, h) be a region in a reducible flow graph and
letR1 = (N1, N1 ×N1 ∩ E, h1) be a subregion ofR. LetR2 = (N2, N2 ×N2 ∩ E) be the subgraph
of R not containing the nodes inR1 i.e.N2 = N −N1. Then the regionR1 is afeasibleregion if and
only if R2 is a region.

It can be easily seen that ifR1 is feasible, thenR2 is also feasible and that a pair of feasible
subregions forms a parse of the given maximal region.

Result 6.19 Leth be some node in the dominator tree of a maximal reducible flow graph. LetR be
the region consistingh and all its descendents in the dominator tree. Let(k1, k2, . . . , kn) be all the
children ofh in their “natural” order. Let R1 be the region consisting ofkn and all its descendents.
ThenR1 is a feasible region.

Proof:
See Figure 6.10. We know thatkn and all its descendents form a region. ThusR1 is a region. Now

h

k0 kn

R2 R1

kn−1. . .

Figure 6.10: Region with rightmost child as header

to show thatR1 is feasible, it is sufficient to show thatR2 consisting of all the remaining nodes is a
region. To show that, we first note that in a maximal rfg there exists an edgem → h in R∀m ∈ R1.
Apart from that, there does not exist any other edge of the formm → n,m ∈ R1, n ∈ R2. Thus all
the edge fromR1 toR2 are to its headerh. ThusR2 in indeed a region. HenceR1 and thereforeR2

is a feasible region. �

Result 6.20 Leth be some node in the dominator tree of a maximal reducible flow graph. LetR be
the region consisting ofh and all its descendents in the dominator tree. Let(k1, k2, . . . , kn) be all the
children ofh in their “natural” order. Let R1 be the subgraph consisting of any two childrenki and
kj and all its descendents. ThenR1 is not region.

Proof:
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h

ki kj

R1

Figure 6.11: Two children forming a region

See Figure 6.11. LetR1 be the subgraph ofR containing nodeski, kj and their descendents.Since
ki andkj are the children ofh, by definition, there exists the edgesh → ki andh → kj. Thus the
subgraphR1 has two entry points from outside it. So,R1 cannot be a region and hence it cannot also
be a feasible region. �

Result 6.21 Let a maximal regionR be divided into two regionsR1 andR2 such thatR2 dominates
R1. Then the header ofR1 is the rightmost child of the header ofR2 in the dominator tree ofR.

Proof:

h1

h2

R2 R1

R

Figure 6.12: Division of a region into two regions

See Figure 6.12.R is a region divided into two subregionsR1 andR2 with headersh1 andh2

respectively. Also,R2 dominatesR1. Because of this, the headerh2 of R2 is nothing but the header
h of the original regionR. Sinceh dominates all the nodes inR, h2 dominates all the nodes inR2 as
well as all the nodes inR1. So, clearlyh2 dominatesh1. Also,h2 is the immediate dominator ofh1.
To see this, let us suppose that there is an immediate dominator, sayd ∈ R, of h1 andd 6= h2. Then
every path fromh2 to h1 must pass throughd. But there exists an edgeh2 → h1, giving a path from
h2 to h1 that does not containd. Thus our assumption about the existence of noded is wrong. Hence
h2 is the immediate dominator ofh1 in the dominator tree ofR.

Now in a maximal region, there exist edges from all the nodes inR1 to h2. There edges are the
back edges and can be accounted for as the edge from a node to its dominator in a maximal rfg. Next,
there is an edgeh2 → h1 which can be accounted for as an edge from a node to its child in a maximal
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rfg. Also, there are edges from nodes inR2 to the headerh1 of the regionR1. Clearly, these edges
are not back edges ash1 does not dominate any node inR2. So these edges are forward edges. These
edges can be accounted for as edges from the left siblings of a node and their descendents to that
node in a maximal rfg. Thus, all the nodes inR2 excepth2 are either the left siblings ofh1 or the
descendents of some left sibling ofh1. So these nodes must be on the left ofh1 in the dominator tree.
So,h1 must be the rightmost child ofh2 in the dominator tree ofR. �

These results will be used further to show that the two characterizations of spiral graphs that we
have developed viz. Result 6.1.2 and section 7.2 are identical.

Result 6.22 Every maximal reducible flow graph has a unique parse.

Proof:
It can be observed that a given maximal reducible flow graph can be parsed in a single way as given
in Result 6.21. The parses themselves are maximal regions. Applying result 6.21 inductively to them,
the result immediately follows. �

6.4.1 Synthesis of Reducible Flow Graphs

In Chapter 2 we have defined reducible flow graphs and given a flow graph, we can find whether
or not it is reducible. This is the analysis aspect of the problem. But what about the synthesis or
construction of reducible flow graphs? Researchers have proposed methods of constructing reducible
flow graphs, but these methods are either not general (they do not generate all possible reducible
flow graphs, e.g. spiral graphs) or are based on the inverse ofT1 andT2 transformations as we will
be defining in Chapter 9. The concept ofmaximal reducible flow graphs can be thought as a new
method of synthesizing reducible flow graphs that is general and is based on the dominator tree of
the flow graphs.

Any reducible flow graph can be generate by first constructing the maximal reducible flow graphs
and then removing selected edges from the graph, taking care that in the resulting flow graphs, re-
moving all the back edges, the flow graph is such that all nodes are reachable from the initial node.
This method allows us to construct arbitrary reducible flow graphs that may seldom occur practically.

6.5 Partial Ordering in Reducible Flow Graphs

6.5.1 The Dominance Relation

We know that a noded of a flow graphdominatesnoden, written asd dom m, if every path from the
initial node of the flow graph ton goes throughd.

Now it can be easily seen that this definition implies a dominance relationship among the nodes
of the flow graph. We represent this relationship symbolically by the≤ sign. Thus, in a flow graph
d ≤ m if d domm. This dominance relation is

1. reflexive, since all nodesn, n ≤ n i.e. every node dominates itself.

2. transitive, since ifa ≤ b andb ≤ c ⇒ a ≤ c i.e. if a dominatesb andb dominatesc, thena
dominatesc.
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3. antisymmetric, sincea ≤ b ⇒ b 6≤ a, unlessa = b i.e. if a andb are distinct, then eithera
dominatesb or b dominatesa, but not both.

Thus, the dominance relation on the nodes of a flow graph is reflexive, transitive and antisym-
metric i.e. it is apartial ordering relation. Now each partial ordering relation can be represented
by aHasse diagramin which there is a sequence of arrows froma to b if and only if a ≤ b and the
diagram is drawn is such a way that all the arrow heads point upwards. In case of flow graph, the
Hasse diagram is nothing but the dominator tree of the flow graph drawn inverted with the root at the
bottom.

6.5.2 Some Results Based On Partial Ordering

We can now immediately make some observations about the reducible flow graphs by considering
the dominance relationship≤

1. The set of nodesN in the reducible flow graph and the dominance relation (≤) from a partially
ordered set (poset), represented as (N,≤).

2. If H is the height of the dominator tree, then the length of the longestchain in the poset (N,≤)
is nothing butH.

3. Theminimal elementof N is the root (n0) of the dominator tree, since for nob ∈ N, b 6=
n0, b ≤ n0 i.e. there is no nodeb 6= n0 such thatb dominatesn0.

4. Themaximal elementsof N are nothing but the leaf nodes of the dominator tree since ifk is a
leaf node of the dominator tree then for nob ∈ N, b 6= k, k ≤ b i.e. there is no nodeb 6= k such
thatk dominatesb.

5. The poset (N,≤) cannotpossibly from alattice. This is because given two elementsa, b ∈ N ,
such that neithera ≤ b nor b ≤ a we can find theirgreatest lower boundbut these two element
cannothave any common upper bound. If the nodesa andb have any common upper bound
i.e a nodek such thata ≤ k andb ≤ k thena dominatesk andb dominatesk. Then either
a dominatesb (or else there is a path in the flow graph fromn0 to k that does not containa,
contradicting the fact thata ≤ k) or b dominatesa (or else there is a path in the flow graph from
n0 to k that does not containb, contradicting the fact thatb ≤ a). This contradicts the fact that
neithera ≤ b nor b ≤ a. Thus we cannot find the least upper bound of two unrelated elements
in (N,≤). Therefore, (N,≤) cannot form a poset.

6. We know that in a partially ordered set (N,≤), if the length of the longest chain inn, then the
elements ofN can be partitioned inton disjointantichains. In case of reducible flow graphs the
length of the longest chain is the heightH of the dominator tree. Thus, the nodes in a reducible
flow graph can be partitioned intoH disjoint subsets such that for any two distinct elementsa
andb belonging to the same subset, neithera ≤ b nor b ≤ a.

6.5.3 Antichain Method for Matrix of Levels

Let us first define the matrix of levels for the given flow graph.
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Definition 6.7 (Level of a node) If m → n is a back edge in a non-redundant acyclic path in a
flow graph, then thelevelof noden is the number of back edges covered in reachingn in the path
beginning at the first node.

Definition 6.8 (Matrix of Levels) Thematrix of levelsfor a flow graph is a matrix indicating the
levels of the nodes in the flow graph. It consists ofd rows,d being the depth of the flow graph. A
noden is in row (i.e. level)i iff its level is i in some non-redundant acyclic path in the flow graph.

Observation It has been observed that there is a certain relationship between the matrix of levels of
a maximal rfg and its dominator tree. We know that the dominator relation induces a partial ordering
among the nodes of the flow graph. If the height of the dominator tree ish, then the length of the
longest chain in the poset(N,≤) is h. Thus, there existsh antichains in(N,≤). We can form these
antichains as shown in the Figure 6.13.

1

2

4

3

Figure 6.13: Antichains in the dominator tree

Now let us number the nodes in the longest chain starting with the leaf and working towards the
root. The leaf is assigned the number1 and continuing the root is assigned the numberh. Now each
antichain formed will contain exactly one element of the longest chain. Let the antichainAi contain
elementi of the longest chain. Then it has been observed the the leveli of the matrix contains all the
nodesN − Ai ∪ Ai−1 ∪ . . . ∪ A1.

Also, we can observe that at each level, the antichain consists of all the leaf nodes of the domi-
nator tree.

From the above observation, we can immediately give an algorithm to find the matrix of levels
for a maximal rfg, given the dominator tree of the max rfg. This algorithm can be used to find the
matrix of levels for a maximal rfg by directly looking at its dominator tree instead of first finding the
list of non-redundant paths and then finding the matrix.

6.5.4 Antichain Method for Heuristic Node Listings of Maximal rfgs

In this section, we give the relationship between the antichains in the dominator tree and the node
listing produced by the simplified heuristic node listing program (sheuristic ).
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1: /* D is the dominator tree of the maximal rfg */
/* h is the root of D */

2: level := 1 ; /* initial level */
3: while D is not empty do
4: print level;
5: print all non leaf nodes in D ;
6: remove all leaf nodes from D ;
7: level := level + 1 ;
8: end while

Algorithm 6: Finding the matrix of levels for max rfg

Let the dominator tree be partitioned intoh disjoint antichains as before. Then we give two
equivalent methods of finding the heuristic node listing for the maximal rfg corresponding to that
dominator tree. These methods always giveδ ≤ d, whered is the depth of the maximal rfg (i.e.
h− 1).

Method 1

1. Find the antichains in the dominator tree and label them asA1, A2, . . . , Ah.

2. For all the antichainsA1, A2, . . . Ah−1 do step 3.

3. Given an antichainAi, for all nodesni in Ai do the following: at leveli, list all the nodes inD
exceptni and its descendents.

Method 2
This method is a refinement of Method 1. Ifn1 andn2 are two nodes in a certain level, then by
definition of an antichain, none of the one dominates the other. So,n1 andn2 do not have common
descendents. So when applying the rules of Method 1,n1 and its descendents will be listed when
applying the rule ton2 andn2 and its descendents will be listed when applying the rule ton1. In other
words,if antichainAi has two or more elements, then that level has all the nodes in the graph.

If the antichainAi is singleton consisting of onlyn, then leveli does not containn and its
descendents. This leads to the following method.

1. Find all the antichains in the dominator tree and label then asA1, A2, . . . , Ah.

2. For antichainsA1, A2, . . . , Ah−1, do step 3.

3. If Ai is singleton consisting of onlyni, then list at leveli all nodes exceptni and its descendents,
else list all the nodes at leveli.

This method of generating heuristic node listings is computationally much more efficient than the
method of first finding all the acyclic paths in the flow graph that begin with a back edge, eliminating
the redundant paths and then finsing the node listing.

As an example of this method, consider the maximal rfg corresponding to the dominator tree
shown in Figure 6.14.

The node listing for this maximal rfg is as follows:
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A1

A2

A3

A4

A5

A6

A70
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Figure 6.14: Heuristic node listing of maximal rfg

Level Nodes

1 0 1 2 3 4 5 6 7 8 9 10
2 0 1 2 3 4 5 6 7
3 0 1 2 3 4 5 6
4 0 1 2 3
5 0 1 2
6 0

• A1 is non-singleton, so level1 has all the nodes.

• Level2 does not contain8 and its descendents9, 10.

• Level3 does not contain7 and its descendents8, 9, 10 and so on.

6.6 Binary Parsable Reducible Flow Graphs

As seen in the previous chapters, the only reducible flow graphs for which we can say thatδ ≤ log n
are the spiral graphs with all the nodes added by rule (2b). In this section, we introduce a more
general class of reducible flow graphs for which the density is provably bounded bylog n.

Definition 6.9 (Binary Parsable rfgs) A binary parsable reducible flow graphof 2n nodes is a
reducible flow graph of2n nodes and is defined as follows.
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1. A single node with no edge is a binary parsable rfg.

2. A spiral (2b) graph of2n nodes is a binary parsable rfg.

3. If a reducible flow graphG of 2n nodes can be parsed into two regionsR1 andR2 each with
2n−1 nodes andR1 andR2 themselves are binary parsable rfgs, thenG is also a binary parsable
rfg.

Thus, it can be seen that a binary parsable rfg is either a (2b) spiral graph or can be parsed into
two regions each having half the number of nodes. It can be easily seen that there exist reducible
flow graph that are not binary parsable viz. a spiral graph with the last node added using rule (2a).
Nevertheless, the class of binary parsable flow graphs is more general than the class of spiral (2b)
graphs.

Result 6.23 For every binary parsable rfg of2n nodes,δ ≤ n.

Proof:
We will prove this result by induction onn. As the basis of induction, a single node has density 0,
which trivially satisfies the result. Now consider a binary parsable rfg with2n nodes,n > 0. If it
is a (2b) spiral graph, we have already proved that for spiral (2b) graphsδ ≤ log n. In case it is not
a spiral (2b) graph, then it can be parsed into two regionsR1 andR2 each with2n−1 nodes. Let us
assume without loss of generality thatR2 dominatesR1. Then this parse is as shown in figure 6.12.

Now any path that begins inR1, entersR2 and again entersR1 is contained inR1R̂2R̂1. Any
path that begins inR2, entersR1 and again entersR2 is contained inR2R̂1R̂2. Thus,R2R1R̂2R̂1. By
the inductive hypothesis, each ofR1 andR2 has a densityδ′ ≤ n − 1. Therefore, the density of the
original graph is given byδ ≤ n− 1 + 1⇒ δ ≤ n. �

6.6.1 Constructing Binary Parsable Flow Graphs

In this section, we describe one method of constructing binary parsable reducible flow graphs. This
method is based on the fact that a maximal rfg can be partitioned into regions in a unique was, as
stated before. The method of construction can be stated in a single line as,

To construct a binary parsable rfg of2n nodes, take two binary parsable rfgs of2n−1 nodes, say
R1 andR2. Attach the root of the dominator tree ofR1 as the rightmost child of the root of the domi-
nator tree ofR2 and construct the maximal rfg for the dominator tree so formed. This maximal rfg is
binary parsable.

As an example, the figure 6.15 shows the construction of binary parsable flow graph of 2, 4 and
8 nodes.

6.7 Weak Node Listings for Maximal Rfg’s

In this section, we present some results regarding weak node listings for maximal reducible flow
graphs.

Result 6.24 In a maximal rfg, any basic path can have at most one back edge.
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(a) (b) (c)

Figure 6.15: Construction of Binary Parsable Reducible Flow Graphs

Proof:
A basic path in a flow graph is an acyclic path(x1, x2, . . . , xk), k ≥ 1 such that there is no shorter
acyclic path fromx1 toxk which is a subsequence of(x1, x2, . . . , xk). Now consider that a basic path
in a maximal reducible flow graphG contains2 or more back edges. Let the first of these back edges
bea→ b and the second bec→ d. Thus, the path can be represented asP1abP2cdP3. Therefore, by
the generalization of Lemma 2 in [4] (Result 8.7),d dominatesa. Now, by construction, in a maximal
rfg, there exists the back edgea → d. Now the pathP1adP3 is a path contained inP1abP2cdP3 and
having the same source and destination as before. This means thatP1abP2cdP3 cannot be a basic
path. �

Result 6.25 For every maximal rfg ofn nodes, there exists a weak node listing of length2n.

Proof:
From Result 6.24, any basic path in a maximal rfg can have at most 1 back edge. IfÂ is the acyclic
ordering of the maximal rfg, then it can be easily seen that all the basic paths in the maximal rfg are
a subsequence of̂AÂ. Thus,ÂÂ is aweak node listingfor the maximal rfg and its length is2n. �

The significance of the above result is limited since ifG′ is a subgraph ofG, it does not neces-
sarily imply that the weak node listing forG is also a weak node listing forG′.

6.8 Applications of Maximal Reducible Flow Graphs

In the previous sections, we have derived many interesting results and properties of maximal re-
ducible flow graphs. In the next chapter, we are going to examine one particular type of maximal rfg
viz. spiral graphs and their properties. It can be seen that a maximal rfg has a very well defined and
fixed structure. This introduces regularity in the properties of maximal rfg. We can derive many prop-
erties of maximal rfg by exploiting this regularity in the structure of a maximal rfg. Some possible
applications of maximal reducible flow graphs can be,
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• To derive or prove the upper or lower bounds on the properties of reducible flow graphs
As we have seen, every reducible flow graph is a subgraph of one or more maximal reducible
flow graph. Thus, any arbitrary rfg is contained in some maximal rfg. Thus, if we want to
derive or prove any property for rfg,is is sufficient to prove that property for maximal rfg’s.
Of course, the property must be such that if a flow graphG has that property, every reducible
sub-flow graphG′ of G also has that property.

• To analyze various data flow analysis algorithms
Since maximal rfgs are the “largest” of all the reducible flow graphs, we conjecture that various
data flow analysis algorithms may show worst/best case behavior when they perform analysis
on maximal rfgs. A study of the behavior of these algorithms in relation to maximal rfgs may
enable us to improve the worst case time complexity of these algorithms.

• For comparison study of various data flow analysis algorithms
A large number of data flow analysis algorithms are available today. For worst case comparison
study, we feel that a comparison of these algorithms on the basis of their behavior on maximal
rfgs may be sufficient.

• As a measure of program complexity
The number of nodes in the flow graph along with the degree of “closeness” of the given re-
ducible flow graph to maximal rfgs can be used as a measure of the complexity of the program.
The “closeness” may be measured in terms of the number of edges that are needed to be added
to the given flow to convert into a maximal rfg.

In addition, during the course of the discussions, we have also found that the maximal rfgs are useful
for verifying our conjectures or to provide contradictions to the things we propose.

As an example of the use of maximal rfgs in proving the upper and lower bounds, we prove that
the number of acyclic orderings of a given reducible flow graph is a lower bound on the number of
parses it can have. We know that the parse of a reducible flow graph is nothing but the its division
into regions. This is done so as to impose a hierarchical structure on the flow graph. Different parses
may lead to different interpretations of the same program, from the control flow analysis point of
view. Intuitively, a simple program has many different interpretations and a complex on has fewer
interpretations. Thus, more the number of parses, simpler the program and vice versa.

Now, we know that every reducible flow graph is a subgraph of some maximal reducible flow
graph. Also, a reducible flow graph can be a subgraph of more than one maximal rfg. We have said
that the number of maximal rfgs of which the given rfg is a subgraph is equal to the number of acyclic
orderings of the given rfg. However, it has been practically observed that apart from these maximal
rfgs, a given rfg can be a subgraph of some more rfg’s as well. The dominator trees of these maximal
rfg’s is different from any “ordered” dominator tree of the given rfg. Thus, ifNA is the number of
acyclic orderings of the given rfg andNM is the number of maximal reducible flow graphs of which
the given rfg is a subgraph, thenNM ≥ NA. Now it can be easily seen that each maximal rfg of
which the given rfg is a subgraph corresponds to a different parse of the given rfg. Thus, the number
of parses of the given rfg is given byNP = NM . HenceNP ≥ NA. Thus,the number of acyclic
orderings of the given rfg is a lower bound on the number of parses it can have.

One important point that come out is regarding the complexity. We can say that thecomplexity
of the program is inversely proportional toNM . Consider a maximal rfg itself. Since it has a unique
parse,NM = 1 and henceNM has the smallest value for maximal rfg and hence the maximal rfg
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corresponds to the most complex programs. AsNM for the given rfg increases, its complexity drops
down.

6.9 Density, Node Listings and Maximal Rfg’s

As we have seen previously, every reducible flow graph ofn nodes is a subgraph of some maximal
rfg of n nodes. As a result, everystrongnode listing for a maximal rfg is also a strong node listing
for every subgraph of it. Thus, thedensities of maximal reducible flow graphs are an upper bound on
the densities of arbitrary reducible flow graphs. Thus, to prove thatδ ≤ log n for any reducible flow
graph, it is sufficient to show that the result is true for all maximal rfgs. We hope that dealing with
maximal rfgs will make the proof easier to tackle. We first state the following simple result.

Result 6.26 Theδ is the density of a maximal rfg with a dominator tree of heighth thenδ ≥ blog hc.

Proof:
If h is the height of the dominator tree of a maximal rfgG, then the subgraphS of G formed from
theh nodes in the longest chain is a spiral graph ofh nodes, all added using rule (2b). Now, for (2b)
spiral graphs, we have already proved thatδS = blog hc. SinceS is a subgraph ofG, it follows that
for G, δ ≥ δS ⇒ δ ≥ blog hc. �

Also, from the construction of a maximal rfg, it can be seen that the dominator tree of a flow
graph is one of its important properties. Also, the depth of the flow graph is bounded from above by
the height of the dominator tree, sinced ≤ h − 1, h being the height of the dominator tree. Some
experimentation along with the observations regarding maximal rfgs suggest that the density of a
reducible flow graph is bounded byδ ≤ log (d+ 1), which is a more stronger bound thanlog n. Thus,
the concept of maximal rfgs have not only motivated us to shift our concentration on the dominator
tree and the dominator relationship in the flow graphs but also have enabled us to arrive at a stronger
bound on the densities of flow graphs than the previous one.

❑ ❑ ❑



CHAPTER 7
Properties of Spiral Graphs

In this chapter, we examine the properties of spiral graphs in relation to our newly formed concept of
maximal reducible flow graphs. In particular, we show that spiral graphs are special type of maximal
reducible flow graph and then examine some properties of spiral graphs.

7.1 Spiral Graphs are Maximal Reducible Flow Graphs

Result 7.1 A spiral graph is a maximal reducible flow graph.

Proof:
We will prove this by induction onn, the number of nodes in the spiral graph.n = 1 andn = 2
are trivial cases as no additional edge can be added to these spiral graphs. Now consider a spiral
graph ofn = 3 nodes. There are3! × 23−1 spiral graphs of3 nodes. Now, it is obvious that we
need not consider the isomorphic spiral graphs. As a result, what is needed is just to check the2n−1

spiral graphs when nodes are added in the sequence say0, 1, . . . , n− 1. Thus, for3 nodes, there are
23−1 = 4 spiral graphs that need to be checked. It can be shown that for all these graphs, addition of
the only possible additional edge renders it irreducible. Thus, we have proved the above statement
for n = 3.

Induction HypothesisLet us assume that the statement holds true for any spiral graph havingn − 1
nodes.

Induction StepNow consider a spiral graph onn nodes forn > 3. It can be constructed by adding
thenth node to a spiral graph ofn− 1 nodes, sayG. In that case any additional edge belonging toG
itself will make the original spiral graph (G) and hence the new graph irreducible.

Now, Consider that thenth node is added using rule (2a). (Figure 7.1–a) Any additional edge in
the graph must be of the formn→ x, wherex ∈ G, x 6= n0. Let us consider that the addition of such
an edge does not cause the graph to become irreducible. Now consider the two edgesx→ n, n→ x.
They form a cycle. Now the edgex→ n is a forward edge by definition of a spiral graph. So,n→ x
must be a back edge. Therefore,x dominatesn. So every path from the initial noden0 to n must
containx. However, there is a direct edge fromn0 to n. Therefore, our original assumption is false.
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Figure 7.1: Adding a node to a spiral graph

Thus, addition of any additional edge will make the graph irreducible.

Now, consider that thenth node is added using rule (2b). (Figure 7.1–b) Any additional edge in
the graph is of the formn → x, wherex ∈ G, x 6= n0. Let us consider that the addition of such an
edge does not cause the graph to become irreducible. Now, we know thatG itself is a spiral graph, so
thatn0 dominates all the nodesx, x ∈ G, x 6= n0. However, addition of the edge of the formn → x
creates a path from the headern to x which does not includen0. This contradicts the fact thatn0

dominates all node x,x ∈ G, x 6= n0. Thus our original assumption is wrong. Thus, the addition of
any additional edge in this case too renders the graph irreducible. �

7.1.1 How are spiral graphs a special case of maximal rfg’s ?

From the above theorem, we can see that spiral graphs are really special type of maximal reducible
flow graphs. Consider adding a node using rule (2a). See Figure 7.2. This can be thought of adding
the new node as therightmostson of the header, and for each sonm of the header,m 6= (newnode)
add the edgem → (newnode). At the same time, add the edges from the nodes in the trees rooted
at all the sons of header to (new node). In Figure 7.2 the original graph is shown in dark edges. It is
a spiral graph with nodes added in the order0, 1, 2, 3 all using rule (2a). The Figure shows how the
addition of node4 by rule (2a) can now be visualized as adding the node4 as the son of the header0.
The dotted edges are the ones that will be added in this case.

0

1 2 3 4

Figure 7.2: Adding a node using rule (2a)

Consider adding a node using rule (2b). See Figure 7.3. This can be thought of as adding the
new node as the header of the dominator tree. Then the edgen → n0 is added using rule (b), edge
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from previous nodes to n are added using rule (a). In Figure 7.3, the original graph is a spiral graph
with nodes added in the order0, 1, 2 all using rule (2b). The figure shows how the addition of node3
by rule (2b) can now be visualized as adding node3 as the header of the original graph. The dotted
edges are the one that will be added in this case.

3

2

1

0

Figure 7.3: Adding a node using rule (2b)

Thus, out ofn + 1 possibilities, spiral graphs consider only two possibilities of adding a node
and when adding using rule (2a) for spiral graphs, the rule (c) is being applied in a still restricted
manner. Thus a spiral graph is more restricted that a maximal rfg. In other words, a spiral graph is a
special kind of maximal rfg.

7.2 Properties of Spiral Graphs

Result 7.2 A node added to a spiral graph using rule (2a) is a leaf node of the dominator tree of
the spiral graph.

Proof:
We will prove this result by examining the effect that the addition of a node to a spiral graph has on
its dominator tree. If we add a node, saym, to the spiral graph using rule (2a), the nodem becomes
the rightmost son of the headerh of the graph, as shown in Figure 7.4. On the other hand, if the node
m is added to the spiral graph using rule (2b), it becomes the father of the header of the graph, as
shown in Figure 7.5.

h h

m

Figure 7.4: A node added using rule (2a)

Now consider that a nodem is added to the spiral graph using rule (2a). It will then become
the son of the current header of the graph. Now any additional nodes added to the spiral graph (after
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h
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m

Figure 7.5: A node added using rule (2b)

nodem) using rule (2a), will clearly become the sons of the current headerh and not ofm. The first
node , sayk, added to the graph by rule (2b) after the addition of nodem will become the father of
the headerh of the graph. Now if any nodes are added using rule (2a), they will become the children
of k and so on. Now since a node can be the child of at most one node, we can say that none of the
nodes added to the spiral graph after the addition of a node by rule (2a) can become the children of
that node. Since node of the nodes added to the spiral graph before the addition of a node can be the
children of that node, we can say that if we add a node to a spiral graph using rule (2a), that node will
not have any child in the dominator tree i.e. it will be the leaf node of the dominator tree. �

Result 7.3 A node added to a spiral graph using rule (2b) is always the leftmost child of its father
and is never a leaf node of the dominator tree.

Proof:
The second part of the result is obvious. When we add a node using rule (2b), we add it as the father
of the current header of the graph. Thus clearly that node has a son and hence it is not a leaf node of
the dominator tree. To prove the first part, let us assume that a node saym was added to a spiral graph
using rule (2b). Now if we add any additional nodes using rule (2a), these will become the children
ofm and hence we need not consider them. In case we do not add any node afterm using rule (2b)m
remains the header of the graph for which the above statement is trivially true. Now consider a node
k added to the spiral graph using rule (2b).k will now become the header of the graph andm will be
the child ofk. Now, only those nodes that are added using rule (2a) will be in the same level asm.
By the previous observation, these nodes will be added as the rightmost sons ofk. Thus we can see
thatm is the leftmost child ofk. �

From the above results, we can immediately say that the dominator trees of spiral graphs are
characterized by the following properties (Figure 7.6)

• All the nodes at the same level have the same father.

• At each level in the dominator tree, there isat most one nodewhich is not a leaf node and that
node is the leftmost son of its father and it is added using rule (2b).

• All the other nodes in that level are leaf nodes and are added using rule (2a).

Result 7.4 The above characterization of spiral graphs and the one stated in Result 6.1 are identi-
cal.

Proof:
We recall from Result 6.21 that if a maximal regionR is divided into two subregionsR1 andR2
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Figure 7.6: The dominator tree of a spiral graph

with headersh1 andh2 respectively andR2 dominatesR1, thenh1 is the rightmost child ofh2 in the
dominator tree ofR. Conversely, we can say that given a maximal regionR, we can divide it into two
regions in only one way, such that the rightmost child of the header and all its descendents for one
region, sayR1 and the remaining nodes form another region, sayR2, such thatR2 dominatesR1.

Now, in case of spiral graphs, let us first show that if maximal rfg has a dominator tree as char-
acterized above, then it can be divided into a series of singleton feasible regions. Let us consider the
headerh of the dominator tree . Letk1, k2, . . . , kn be the children ofh in their natural order. To begin
with kn alone is a feasible region, as the remaining nodes i.e.h, k1, . . . kn−1 and their descendents
form a region. Thus the original spiral graph can be divided into two regions of which one is single-
ton. We apply the same argument tokn−1, kn−1, . . . k2 and divide each of the intermediate regions
into two regions, one of which is singleton. See Figure 7.7. We will finally reach a stage whenh

k1
k2 kn−1 kn

h

R

Figure 7.7: Division non-leftmost children

has a single childk1. In this case,k1 and its descendents form one region and the headerh forms
other singleton region. Now we can again apply the same argument to the region consisting ofk1

and all its descendents and show that it can be divided into a series of singleton regions. Thus the
characterization of the spiral graphs as stated above is equivalent to the one stated in Result 6.1. This
characterization is only one way, i.e. if the given rfg has a dominator tree having the above properties,
it surely is a subgraph of some spiral graphs. Else, it may or may not be a subgraph of some spiral
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graph. More accurately, a rfg is a subgraph of some spiral graph iff it is a subgraph of some maximal
rfg having a dominator tree having the above properties. �

Result 7.5 The height(h) of the dominator tree of a spiral graph is one more than the number of
nodes added to it suing rule (2b).

Proof:
When we add the first node using rule (1), the height of the dominator tree is1. After that, every time
we add a node using rule (2a), the height of the dominator tree remains unchanged and every time we
add a node using rule (2b) the height of the dominator tree increases by1. Thus, we can say that

h = 1+ number of nodes added to the spiral graph using rule (2b). �

Result 7.6 The order in which the nodes are added to a spiral graph is given by the “inorder”
traversal of its dominator tree.

Proof:
We first define the “inorder” traversal of the dominator tree of a spiral graph as follows

1. Visit the leftmost son

2. Visit the node

3. Visit the remaining children in their “natural” order

Thus, for the dominator tree in Figure 7.6, the inorder traversal of the dominator tree gives the se-
quence of nodes as 0 1 2 3 4 5 6 7 8. In this case, we can say that node 0 was added using rule 1, node
1 was added using rule (2b), nodes 2,3 by rule (2a), 4 by rule (2b), 5 by (2a), 6 by (2b) and finally 7
and 8 by (2a). �

7.3 Reduction of a Flow Graphs into a Spiral Graph

In the previous section, we examined the characteristics of the dominator trees of spiral graphs. In
the paper “Node Listing for reducible flow graphs” Aho and Ullman have shown that when proper
regions are replaced by single nodes, any flow graph can be reduced into a spiral graph. In this section
we examine exactly how this reduction takes place and which are the regions that are to be replaced
for such a reduction.

As seen in the previous section, in any spiral graph, all except the leftmost node in the dominator
tree are the leaf nodes. We have also seen that in any reducible flow graph, the subgraph formed by
a node and all its descendents is a region. Now, if we are given any reducible flow graph which has
a dominator tree in which these exists node(s) which is not the leftmost node and is not a leaf node,
then if we replace that node and all its descendents (which for a region) by another node, then we
will get a flow graph in which all the nodes that are not the leftmost nodes will be leaf nodes i.e. the
resulting flow graph will be a spiral graph. This is shown in Figure 7.8.

Thus, if we define a transformation of replacing the non-leftmost node and all its descendents
in the dominator tree by a single node, then repeated application of such a transformation until the
transformation cannot be applied will finally give a graph which is a spiral graph with some edges
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Figure 7.8: Reduction of a flow graph to a spiral graph

removed. Therefore, looking at the dominator tree we can easily figure out which are the regions that
are to be replaced by single nodes in order to reduce the flow graph to a spiral graph. These regions
are exactly those node and their descendents in the dominator tree which are not the leaf nodes and
are not the leftmost children in the dominator tree.

7.4 Algorithm For Computing Sequences of Regions

In the paper “Node Listings for Reducible Flow Graphs” [4], Aho and Ullman have given an algorithm
for converting a flow graph into a subgraph of a spiral graph by replacing appropriate regions by single
nodes. In the previous section, we have seen how this conversion takes place. They have also given
an algorithm for that purpose. We now give an equivalent algorithm.

First, let us see the algorithm given in [4]. Given a reducible flow graphG = (N,E, n0), we are
interested in finding a set of disjoint regionsR1, R2, . . . , Rm, whose union includes all nodes ofG,
having the following properties:

1. none ofR1, R2, . . . , Rm has more that2
3
k nodes ;

2. there is a sequence of regionsS1, S2, . . . , Sm such that:

(a) S1 = R1 ,

(b) for i > 1 , Si consists ofSi−1 andRi with one as the predecessor of the other,

(c) Sm isG.

3. The graph formed fromG by reducing each ofR1, R2, . . . , Rm to a single node with no loops
is a spiral graph with zero or more edges removed.

As stated in [4], ifT is any region of more that2
3
k nodes, then either
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1. it is composed of two nonempty regions, one of which has more that2
3
k nodes, or

2. it is composed of two regions the larger of which has between1
3
k and 2

3
k nodes.

The algorithm for generating the sequence of pairs(Sm, Rm), (Sm−1, Rm−1), . . . , (S1, R1) as
given in [4] is shown in Algorithm 7.

1: T := G ;
2: while T has more than 2

3
k nodes do

3: let T be composed of regions T1 and T2, with T1 having no fewer nodes that T2 ;
4: print (T, T2) ;
5: T := T1 ;
6: end while
7: print (T, T ) ;

Algorithm 7: Computing the sequences of regions

We now give an equivalent algorithm. The algorithm is based on the fact that a maximal region
can be divided into two region in only one way, one region consisting of the rightmost child of the
header and its descendents and the other consisting of the remaining nodes. This algorithm expects
as input the weighted dominator tree of the flow graph. We first define a weighted dominator tree.

Definition 7.1 (Weighted Dominator Tree) Theweighted dominator treeof a flow graph is the
dominator tree of the flow graph with each node assigned a certain weight as follows:

1. The weight of a leaf node is1, and

2. The weight of a non leaf node is given by,w = w1 +w2 + . . .+wn + 1, wherew1, w2, . . . , wn
are the weights of the children of that node.

We now give an algorithm for finding the sequences of regions that satisfy the condition stated
above (Algorithm 8). The algorithm is motivated by the one given by Aho and Ullman. It makes use
of the fact that a non-singleton maximal region can be divided into two regions in a single way, as
given in Result 6.21.

Since this algorithm is not concerned at all about the actual edges that are present in the flow
graph, the above algorithm works for all reducible flow graphs including maximal rfg’s. Furthermore,
the output of this algorithm is the same for all the flow graph having the same dominator tree even if
they have different edges.

As an example, consider the flow graph shown in figure 7.9–a, which is taken from [4]. Its
weighted dominator tree is shown in figure 7.9–b.
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1: /* h is the root of the weighted dominator tree of the given flow graph */
/* Rnode denotes the region formed by node and all its descendents */

2: k := wh ;
3: while wh >

2
3
k do

4: let kn be the rightmost child of h and wn be its weight ;
/* So, Rh can be divided into two regions, one with weight wn and the other with weight
wh − wn */

5: if wn > wh − wn then
6: print (Rh, Rh −Rkn) ;
7: h := kn ;
8: else
9: print (Rh, Rkn) ;

10: Remove from the tree rooted at h kn and its descendents ;
11: wh := wh − wn ;
12: end if
13: end while
14: print (Rh, Rh) ;

Algorithm 8: Finding the sequences of regions
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Figure 7.9: Reducing a flow graph into a spiral graph
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At the first stage,wn = 9 so theif condition satisfies and the pair of regions({1, 2, . . . , 10}, {1})
is printed. In a similar fashion, the algorithm proceeds until all the regions have less that2

3
k nodes.

The calculations done by the algorithm are summarized in the following table. It can be seen that
this algorithm produces5 sequences of regions in the reduction, whereas the one in [4] produces4
sequences of regions. This is because we have assumed the graph to be a maximal rfg, so at the first
stage the regions consists simply the node1 and not the nodes1 and2.

Stage h wh kn wn wh − wn Si Ri

1 1 10 2 9 1 {1, 2 . . . , 10} {1}
2 2 9 3 8 1 {2, 3, . . . , 10} {2}
3 3 8 4 7 1 {3, 4, . . . , 10} {3}
4 4 7 9 2 5 {4, 5, . . . , 10} {9, 10}
5 4 5 8 1 4 {4, 5, . . . , 8} {4, 5, . . . , 8}

7.4.1 Analysis of the Algorithm

As seen in chapter 4, the algorithm by Aho and Ullman enables us to find a node listing of length
at mostn + 2.01n log n for any arbitrary reducible flow graph. If the number of edges in the flow
graph (e) is bounded by2n i.e. e ≤ 2n, then they give an algorithm for finding the node listing in
timeO(n log n). This bound is required for “efficient” parsing of the given reducible flow graph to
produce a sequence of regions.

Here, we analyze the above algorithm (Algorithm 8). It can be easily seen that if the “ordered”
dominator tree of the given rfg is given, then parsing that rfg isO(1) i.e. constant time as we already
know what the division into the regions will be, as given in Result 6.21. Thus, the only problem is
to find the “ordered” dominator tree, which also bounds the time complexity of the above algorithm.
In a general setting, we havee ≤ n2. Then, the “ordered” dominator tree can be found by using the
following steps:

1. Perform the depth first traversal and find the depth first numbers –O(n).

2. Find the acyclic ordering which is the same as the depth first ordering –O(1).

3. Find the immediate dominators for each node –O(e log e) = O(n2 log n) sincee = O(n2).

4. Find the “ordered” dominator tree –O(n), if nodes are visited in the depth first order during
the construction of the dominator tree.

5. At each stage, find a parse of the given regions –O(1).

Thus, it can be seen that the time complexity of the above algorithm for finding the sequences of
regions and hence the node listing isO(n2 log n).

❑ ❑ ❑



CHAPTER 8
Miscellaneous Results

This chapter is a cornucopia of smaller but important results that were found during the project but
do not fit into any of the chapters.

8.1 About Spiral Graphs

Result 8.1 Are any two spiral graphs with the same number of nodes isomorphic ?

The answer isno, they are isomorphic if the nodes are added using the same sequence of rules. Can
they be isomorphic if the nodes are added using different sequence of rules ?Investigate

Result 8.2 The number of different spiral graphs havingn nodes aren!× 2n−1.

Proof:
Givenn nodes, the number of different orders in which these nodes can be added to the spiral graph
is n!. Of thesen nodes, the first has to be added using rule (1), and each of the next nodes can be
added using either rule (2a) or (2b), thus giving2n−1 possibilities. Thus, the total number of spiral
graphs ofn nodes isn!× 2n−1. �

Result 8.3 The number of edges is a spiral graph havingn nodes isn(n+1)
2
− 1.

Proof:
We prove the result by induction onn. The result is trivially true forn = 1. Now let us assume that
the result holds for a spiral graph ofn−1 nodes. Therefore, a spiral graph ofn−1 nodes hasn(n−1)

2
−1

edges. Now, when thenth node is added to the spiral graph, by definitions exactlyn edges are added
to the graph. Thus, the number of edges in the spiral graph so formed inn(n−1)

2
− 1 +n = n(n+1)

2
− 1.

�

Result 8.4 1. If a spiral graph is formed only by adding the nodes using either rule 1 or rule
(2a), its dominator tree will be of height2, with the header at level0 and all the other nodes at
level1.
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2. If a spiral graph is formed only by adding the nodes using either rule 1 or rule (2b), its domi-
nator tree will be skew and of heighth = n, wheren is the number of nodes in the graph. The
node added using rule 1, i.e. the first node will be the leaf of the dominator tree and the last
node will be the root of the dominator tree.

8.1.1 Upper Bound on the Number of Paths

Note In what follows,

1. A ‘path’ means ‘a non-redundant acyclic path beginning with a back edge’

2. A ‘2b-spiral graph’ means ‘a spiral graph in which all nodes are added by rule2b’. The nodes
are added in the ordern− 1, n− 2, . . . , 0.

Result 8.5 In a reducible flow graph ofn nodes, the maximum number of paths havingb back edges
is given byb th entry inn− 1th row of the Pascal’s triangle.

Example 8.1 The Pascal’s Triangle is shown in Figure 8.1.

row = 1, n = 2                                          1
row = 2, n = 3                                       1    1
row = 3, n = 4                                    1    2    1
row = 4, n = 5                                 1    3    3    1  
row = 5, n = 6                              1    4    6    4    1
row = 6, n = 7                           1    5   10  10   5   1

......                                                          ......

......                                                          ......

......                                                          ....... 
Figure 8.1: Pascal’s Triangle

E.g., for any reducible flow graph of7 nodes, the max. no of paths having3 back edges is10,
since the3rd entry in(7−1) = 6th row of Pascal’s triangle is10. Similarly, the maximum no of paths
having5 back edges is5.

Proof:

1. Among all reducible flow graphs ofn nodes, the2b-spiral graph ofn nodes will have the
maximum number of back edges in any path.

2. So, it is sufficient to show that in a2b-spiral graph the number of paths havingb back edges is
equal to theb th entry inn− 1th row of Pascal’s triangle.

3. We prove stmt.[2] by induction.

• Statement [2] can be verified forn = 2 to 7

• Let us assume that stmt.[2] is true for somen = m.
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• We now prove that stmt[2] is true forn = m+ 1

Case [i] :
For b = 1 andb = n− 1, there is only one path. So, stmt[2] is proved forb = 1 andn− 1

Case[ii] :
For 1 < b < n− 1.
We describe a procedure to get a path ofb back edges for2b-spiral graph of (n = m+ 1) nodes
from 2b-spiral graph of (n = m) nodes. The rules of constructing the paths ofb-back edges are:-

(1) Get the paths havingb− 1 back edges in2b-spiral graph of (n = m) nodes. Insert the node
m (i.e. n− 1) at the beginning of that path. e.g. The path 5 4 3 2 0 1 can be obtained from the
path 4 3 2 0 1. In this case,b = 4 andm = 5.
By using this rule, no. of paths havingb back edges created for2b-spiral graph of (n = m+ 1)
nodes= no. of paths having ’b-1’ back edges in2b-spiral graph of (n = m) nodes.

(2) Get the path ofb back edges in2b-spiral graph of (n = m) nodes. The nodem− 1 will be
at the beginning of that path. Convert this path into a new path (which begins with a forward
edge) as follows. Remove that node from the beginning and shift that node as far as possible
towards right, such that in that path the nodes up tom− 1 are in ascending order.
e.g. The path 4 2 3 0 1 will be converted to 2 3 4 0 1.
Now, at the beginning of this converted path, insert the nodem. e.g. At the beginning of the
converted path above, node 5 will be inserted. So, the resultant path will be 5 2 3 4 0 1, which
has 2 back edges. Hereb = 2 andm = 5.
By using this rule, no. of paths havingb back edges created for2b-spiral graph of (n = m+ 1)
nodes = no. of paths havingb back edges in2b-spiral graph of (n = m) nodes.

(3) The path havingb back edges can be constructed using only the above rules.
Now, the total number of paths havingb back edges for2b-spiral graph of (n = m+ 1) nodes
= (the no. of such paths which can be created by rule 1)+ (the no. of such paths which can be
created by rule 2)
= (the no. of paths havingb− 1 back edges when (n = m)) + (the no. of paths havingb back
edges when (n = m))
= (b − 1 th entry onmth row of the Pascal’s triangle)+ (bth entry onmth row of Pascal’s
triangle)
= (bth entry onm+ 1th row of Pascal’s triangle) ..by definition of Pascal’s triangle

Hence proved. �

Result 8.6 The number of paths in a2b-Spiral graph havingn nodes is given by2n−2.

Proof:
Here, as usual, a path means a non-redundant acyclic path beginning with a back edge.

1. The number of paths in a2b-Spiral graph havingn nodes is given by the summation of all the
entries in then− 1th row of the Pascal’s triangle.
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2. We prove the required result by induction. The result can be verified forn = 1 to 7.

3. Let us assume the result forn = m. So, the number of paths in the2b-spiral graph havingm
nodes is2m−2. So, the summation of all the entries in them− 1th row of the Pascal’s triangle
is 2m−2.

4. Now,
Number of paths in (2b)-spiral graph havingm+ 1 nodes
= Summation of all the entries in themth row of the Pascal’s Triangle
= 2×(Summation of all the entries in them− 1th row of the Pascal’s Triangle
= 2× 2m−2

= 2m−1

Hence Proved. �

8.1.2 Method of Finding Subgraphs of Spiral Graphs

Before the development of the theory of maximal rfg’s and the properties of spiral graphs, we did not
have any theoretical basis for finding whether a given rfg is a subgraph of some spiral graph. This
was essential as we had proposed the following proof forδ ≤ log n for any reducible flow graph,

1. Every rfg ofn nodes is a subgraph of some spiral graph ofn nodes.

2. The density of a (2b) spiral graph isδ = dlog ne.

3. Of all the spiral graphs ofn nodes, (2b) spiral graph has the highest density intuitively.

4. Therefore,δ ≤ log n for any rfg.

The first point is the crux of the entire proof. Although the first point was later proved to be false,
until that, the following method of finding the subgraphs of spiral graphs was used. It works for all
the subgraphs of (2b) spiral graphs as well as some (2a)–(2b) spiral graphs. The method is as follows

1. Write down the description of the graph as give on page 123.

2. Start with any arbitrary node of the graph and strike out the entire row for this node in the
description of the graph.

3. If the starting node is the successor of a single node, strike out the entire row for that node also.

4. Repeat (4) as long as possible, each time striking out a row and finding out a new node, only of
which, the current node is a successor i.e. the current striked out node appears only once in the
remaining graph description.

5. If we reach a stage in which the currently striked out node is a successor of 2 or more remaining
nodes, verify whether it is a successor ofall the remaining nodes. If not, the method fails. If
yes, order the remaining nodes such that the successors of a node are also the successors of the
previous node in the ordering.

6. If all the nodes have been exhausted, the graph is a subgraph of a spiral graph with nodes
processed by rule (4) added by rule (2b) and those processed by rule (6) added by rule (2a).
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7. If the method fails, try again starting with a different start node. If the method fails for all pos-
sible choices of starting nodes, then the graph may or may not be a subgraph of a spiral graph.
A more reliable and always correct method is based on the dominator tree characterization and
is implemented as the programisspiral.

As an example of this method, consider the graph in figure 8.2. Let us start applying the rules

0

1 2

3

4

Figure 8.2: Example of the method

beginning with node 3. Initially the graph description is,

0 1 2 4
1 0 2 3
2 0 4
3 1 4
4 0

Now, after striking out the row for node 3, we strike out the row for node 1 as 3 appears only
once in the row for node 1, then we strike out the row for node 0 as 1 appears only once in the row
for 0. This brings us to the following stage,

0 1 2 4
1 0 2 3
2 0 4
3 1 4
4 0

At this stage, the current node 0 is the successor of 2 nodes viz. nodes 2 and 4. As it is the
successor of all the remaining nodes, we order the remaining nodes as(2, 4). Thus, the given graph is
a subgraph of a spiral graph with nodes added in the order: 3–(1), 1–(2b), 0–(2b), 2–(2a) and finally
4–2(a). This can also be seen easily from the dominator tree of the graph.

8.2 Generalization of Lemma 2 in Aho and Ullman

We now generalize the lemma 2 given in the paper “Node Listings for Reducible Flow Graphs” by
Aho and Ullman [4]. The lemma 2 states
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Lemma 2 Let P = n1, n2, . . . , nk be an acyclic path in a reducible flow graph and letni1−1 →
ni1 , ni2−1 → ni2 , . . . , nir−1 → nir be the sequence of back edges alongP in that order. Thennij
dominatesnij−1

for all j, 1 < j ≤ k.

The above lemma states that the head of a back edge in an acyclic path dominates the heads of
all the previous back edges along that path. We now propose a more generalized lemma as follows.

Result 8.7 The head of a back edge in an acyclic path in a reducible flow graph dominates all the
nodes before it in that path. In other words, ifP = (n0, n1, ..., nk) is an acyclic path in a reducible
flow graph andni → ni+1 is a back edge inP , thenni+1 dominatesnj ∀ 1 ≤ j ≤ k.

Proof:
Let P be an acyclic path in a reducible flow graph and letP include the back edgec → d. Then
we have to prove thatd dominates all the previous nodes alongP . Sincec → d is a back edge,d
dominatesc by definition of a back edge.

Now consider a nodeb other thanc that occurs befored in P . Clearly, it occurs before c too.
Let A be the portion ofP from b to c.(Figure 8.3) Let us assume that neitherb, c nor d is the initial

X

b c d

A

n0

Figure 8.3: An acyclic path in a reducible flow graph

node (n0) of the flow graph for simplicity. Now let us assume thatd does not dominateb i.e. there
exists a path from the initial noden0 to b that does not included. Let this path beX. Now consider
the pathXbAc. Clearly,X does not included, nor doesA andb,c are not equal tod or elseP will
not be acyclic. ThusXbAc is a path from the initial noden0 to c that does not included. This is a
contradiction to the fact thatd dominatesc. So our original assumption thatd does not dominateb is
wrong. Sod does dominateb. In fact, along the pathXbAc, d cannot be inA andd is notb andc. So
d must be inX. Since X is any arbitrary path fromn0 to b, it follows thatd is in every path fromn0

to b. This implies thatd dominatesb.

Since in the proof, nodeb was arbitrarily selected, we can conclude thatd dominates all the
nodes that occur before it along pathP . In the proof, we have assumed that neither ofb,c andd is n0.
Let us sort out these cases:

1. b = n0 In this case, the path is as shown in Figure 8.4

c d

A

n0

Figure 8.4: Caseb = n0

In this case the portion of the path fromn0 to c forms a path from the initial node toc that does
not included. This contradicts the fact thatd dominatesc. So, b cannot ben0 in this situation.
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In other words, any acyclic path that begins at the initial node cannot have a back edge. Or, in
any acyclic path that contains the initial noden0, the portion of the path after the occurrence of
n0 cannot have a back edge.

2. d = n0 In this case, the path is as shown in the Figure 8.5

c

A

b n0

Figure 8.5: Cased = n0

In this case, the initial noden0 dominatesc as well asb since the initial node dominates all the
nodes of a flow graph. Thus the cased = n0 is consistent with the given generalization.

3. c = n0 In this case, the path is as shown in the Figure 8.6

A

b n0 d

Figure 8.6: Casec = n0

In this casen0 domd andd domn0. In this case, consider the dominator tree of the flow graph.
In this dominator tree,d is an ancestor ofn0 (sincen0 domd) andn0 is an ancestor ofd (since
d domn0). Clearly, this is possible only ifd = n0. In that case, we have the path as shown in
the Figure 8.7 which is cyclic and contradicts the original assumption thatP is acyclic. So we

A

b n0 n0

Figure 8.7: Casec = n0

conclude that the cased = n0 is not possible. In other words, the initial noden0 cannot be the
tail of a back edge.

�

Thus, we can see that in an acyclic path, the head of a back edge dominates all the previous
nodes in the path. This is a more generalized result than that due to Aho and Ullman. It can now
be easily observed that if, along an acyclic path in a reducible flow graph, we traverse the back edge
n→ d, thend must be a common dominator of all the nodes that preceded in that path.

8.3 Some More Results

Result 8.8 In a minimal node listing for any reducible flow graph, now two adjacent nodes are
identical.
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Proof:
Obvious. �

Result 8.9 If a reducible flow graph (R) has a subgraph (R′) of densityδR′, then the density ofR is
δR ≥ δR′.

Proof:
Obvious. �

Result 8.10 Removal of any back edge from a spiral graph of5 nodes decreases its density by1
from 3 to 2.

Observation There is a relationship between the matrix of levels as produced by the program
matrix and the “heuristic” node listing produced by the programsheuristics . In particular,
the matrix of levels is contained in the “heuristic” node listing. Also, for a spiral graph in which all
the nodes are added using rule (2b), the node listing and the heuristics are the same.

Observation During the discussion with Prof. Diwan of IIT, Powai, he had suggested to “blow”
any reducible flow graph into a spiral graph by the addition of nodes in such a way that all the paths in
the original flow graph are covered in the resulting spiral graph. However, it seems that an arbitrary
reducible flow graph cannot always be blown into a spiral graph. The intuitive reason behind this
statement is as follows:

• Consider a flow graph that is not a subgraph of any spiral graph having the same number of
nodes. Its dominator tree has at least one non-leaf non-leftmost node.

• Now, if we add any number of nodes to the graph, it is not going to convert the non-leftmost
non-leaf node into a leaf node. Thus, the resulting flow graph will not have a dominator tree
that satisfies the characteristics of the dominator trees of spiral graphs.

Result 8.11 For the maximal reducible flow graph with the dominator tree as shown in figure 8.8,
the density is always 1.

Proof:
Consider the maximal rfg with the dominator tree as shown in figure 8.8.

0

1

21 22 2n. . .

Figure 8.8: A maximal rfg with depth 2
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This maximal rfg is similar to a spiral graph with 3 nodes, all added using rule (2b). What we
have done is “spilt” the node2 into a number of children of node1 in the dominator tree, denoted as
21, 22, . . . , 2n. It can be now seen that21, 22, . . . , 2n, 0, 1, 21, 22, . . . , 2n, 0 is a node listing for this
maximal rfg. As each node appears at most twice, this type of maximal rfg has a density 1.�

❑ ❑ ❑



CHAPTER 9
Minimal Reducible Flow Graphs

In this chapter, we define various “transformations”and observe their effect on the densities of the
graphs. We see that some of these transformations do not affect the density whereas some of them
may either increase or decrease the density depending upon whether a node was added or removed
from the graph during the transformation. In each case, we first define the transformation and then
state its effect on the density. Based on the observations, we then formulate the concept of aminimal
reducible flow graph.

9.1 Transformations and Their Effect on Density

9.1.1 T1 Transformations

Definition 9.1 ( T1 Transformation) We define aT1 transformation as the removal of zero or more
self loop of the formn→ n from the graph.

Since self loops do not contribute towards the formation of acyclic paths in the flow graphs, we
can easily say that aT1 transformation does not affect the density of a graph. In other words, ifG is a
graph with densityδ and we obtain a new graphG′ fromG by applying aT1 transformation, then the
densityδ′ of the new graph will beδ′ = δ.

9.1.2 Inverse T1 Transformation

Definition 9.2 (Inverse T1 Transformation) We define an inverseT1 transformation as the addi-
tion of zero or more self loops of the formn→ n to the graph.

Again, since self loops do not contribute towards acyclic paths in the flow graph, inverseT1

transformation does not affect the density of the graph.
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9.1.3 T2 Transformation

Definition 9.3 ( T2 Transformation) If there is a noden, not the initial node, that has a unique
predecessor,m, then aT2 transformation is defined as the deletion ofn and making all the successors
of n (includingm, possibly) the successors ofm.

We can now intuitively say that aT2 transformation may result in a decrease in the density of the
graph, but it will never result in an increase in the density of the graph.

We now extend the concept of aT2 transformation by classifying aT2 transformation into two
classes. If aT2 transformation is applied so that the nodem consumes noden, then theT2 transfor-
mation is classified as

• Type 1, if the nodem is not reachable fromn in the original graph.

• Type 2, if the nodem is reachable fromn in the original graph.

Observation In a maximal reducible flow graph, every node is reachable from every other node.
Hence, aT2 transformation Type 1cannotbe applied to a maximal reducible flow graph.

9.1.4 Inverse T2 Transformation Type 1

Definition 9.4 (Inverse T2 Type 1 Transformation) We define an inverseT2 transformation type
1 as the addition of a node sayk to a graph and the addition of the following edges to the graph

1. The edgem→ k, wherem is some node in the original graph.

2. For all the edges of the formm → n in the original graph, add the edgek → n in the new
graph, only if the addition of the edge does not makem reachable fromk.

Thus, it can be seen that an inverseT2 transformation type 1 is the expansion of a nodem in the
original graph by adding a nodek, makingm as the only predecessor ofk and replicatingsomethe
edges “going out” fromm on the new nodek. The inverseT2 transformation type 1 is illustrated in
Figure 9.1

We can now say that an inverseT2 transformation type 1 does not increase the density of the
graph. LetG be the original graph with densityδ andL as the minimal node listing. LetG′ be
obtained fromG by adding a nodek as the successor ofm using an inverseT2 transformation type
1. Then the node listingL′ of the new graphG′ can be obtained fromL by replacing inL every
occurrence ofm bym, k. This is because any acyclic path that begins withk does not containm as
m is not reachable fromk. Thus no node inL′ is repeated more thanδ times, so that the density of
the new graphG′ is alsoδ.

Thus, we can also argue that aT2 type 1 transformation also does not decrease the density of the
graph.

We can also view theT2 type 1 transformations as follows. If the graph has anarticulationpoint
that divides the flow graph into two parts, then the density of the graph is the maximum of the density
of the two parts. This is illustrated in Figure 9.2.
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m

m

 k

Figure 9.1: InverseT2 Transformation Type 1

9.1.5 Inverse T2 Transformation Type 2

Definition 9.5 (Inverse T2 Type 2 Transformation) We define an inverseT2 transformation type
2 as the addition of a node sayk to a graph and the addition of the following edges to the graph

1. The edgem→ k, wherem is some node in the original graph.

2. For all the edges of the formm→ n in the original graph, add the edgek → n.

3. The edgek → m.

An inverseT2 transformation type 2 is illustrated in Figure 9.3.

We can now say that an inverseT2 transformation type 2 may result in an increase in the density
of the graph. IfG is a graph with densityδ and we apply an inverseT2 transformation type 2 by
adding a nodek as the successor ofm, then the node listingL′ of the new graph can be obtained from
L by replacing the first occurrence ofm in L by k,m, k and all the other occurrences ofm in L by
m, k. This the densityδ′ of the new graph can be at mostδ + 1 i.e. δ′ ≤ δ + 1.

Thus, we can also argue that aT2 type 2 transformation may or may not decrease the density of
the graph.

9.1.6 Significance of These Transformations

We know that any reducible flow graph can be reduced to a single node by repeated application ofT1

andT2 transformations. Thus, inversely, we can say that any reducible flow graph can be constructed
from a single node by repeated application of inverseT1 and inverseT2 type 1 and 2 transformations.
Of these inverseT1 and inverseT2 type 1 transformations do not affect the density of the graph. Only
an inverseT2 type 2 transformation may result in an increase in the density of the graph by 1. Now,
a single node has a trivial densityδ = 0. Thus, the density of a graph is limited by the number of
inverseT2 type 2 transformations required to construct it from a single node. In other words,
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No Such Path

R1

R2

a

Figure 9.2: An articulation point in a flow graph.δ = max(δ1, δ2)

δ ≤ NT22

whereNT22
is the number of inverseT2 type 2 transformations required to construct the graph

from a single node.

9.2 Minimal Reducible Flow Graphs

Definition 9.6 (Minimal Reducible Flow Graph) A minimal reducible flow graphof n nodes
and densityδ is a reducible flow graph ofn nodes and densityδ such that

1. The removal of any edge from the graph will either render it disconnected or will reduce its
density.

2. It cannot be obtained from any minimal reducible flow graph of densityδ and less thann nodes
by repeated application of any of these transformations1

(a) T1 transformation

(b) inverseT1 transformation

(c) inverseT2 transformation type 1

A minimal reducible flow graph ofn nodes and densityδ will be denoted asmin(n,δ).

In essence, minimal reducible flow graphs of densityδ depict the “essential” graph structure(s)
required to have densityδ.

❑ ❑ ❑

1Right Now, we are unaware of any other transformations that will not change the density of a flow graph. As more
of such transformations are discovered, they must be added to this list.
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Figure 9.3: InverseT2 Transformation Type 2



CHAPTER 10
Conclusion and Future Work

10.1 Conclusion

As a part of this research project, we were able to derive many interesting results regardingnode
listings and their applications to data flow analysis.Densityis a new upper bound on the length of
the node listings proposed by our guide Dr. Khedker. We worked on this concept and were able to
prove thatδ ≤ log n for some specific but sufficiently general reducible flow graphs. We also have
an “intuitive” proof for δ ≤ log n for all reducible flow graphs. During this work, we have also
formulated a new concept ofmaximal reducible flow graphsand derived some interesting properties.
Since any reducible flow graph is a subgraph of some maximal rfg, maximal rfg’s can be used to
derive or prove upper or lower bounds on properties of reducible flow graphs.

For the experimentation and verification of the theoretical results, we have also developed a
library of tools for working with flow graphs and node listings. This library was developed under
Linux using Lex and Yacc. For user friendliness, we have also developed a GUI frontend using both
GTK+/GNOME and Qt libraries. Apart from this, we have also implemented parallel brute force
programs using PVM and MPI on the PARAM 10000 Supercomputer at CDAC, Pune.

10.2 Future Work

Research is a continuous activity. Although we have contributed a handful of results to the ongoing
research on density by our guideDr. Khedker, there is still much scope for further work. A theoretical
proof for δ ≤ log n for all reducible flow graphs is still to be derived. For effective use of the node
listing based global data flow analysis method in compilers, an efficient algorithm to find minimal
node listing is required. Although the concept of maximal rfg is theoretically well developed, its
practical applications are yet to be discovered.

One possible way to proveδ ≤ log n would be to prove it for all maximal rfg as density of
maximal rfgs is an upper bound on the density of the contained reducible flow graphs.
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❑ ❑ ❑
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CHAPTER 11
Organization of The Programs

In this chapter, we describe the general organization of the programs and tools developed as a part
of this project. A research project like this one involves a high technical risk with the exact require-
ments of the software not known before hand. The lack of this knowledge of the exact requirements
of the software reduces the scope of the application of the principles of software engineering such
as requirement analysis, design etc. Most of the software development was “demand driven,” a new
idea was thought or the need of verifying some results arose, and then the programs were devel-
oped. However, we have tried to maintain the compatibility of all the programs, so for example, a
program expecting as input a graph can have its input redirected to the output of the program that
produces a graph. Extensive application of the doctrines of software engineering was done during the
development of the GUI front end as described in chapter 14.

File Formats
Following the standard UNIX conventions, we decided to keep all the data generated by the program
in text files as opposed to binary files. This has the following advantages:

• The input/output files can be easily viewed using a standard text editor. Thus, small changes
can be made readily and no separate programs are required to render the data in a human
understandable form.

• Manipulation of the text files is often required during the experimentations. In case the data is
kept as a text file, UNIX offers text manipulation tools likeAwkprogramming language. Thus,
the mapping from one format to another can be handled by writing smallAwkprograms rather
that coding that in C. This saves time and increases reliability due to the use of existing tools.

Data Input and Output
Each of the programs developed expects its input to be in a certain format. The input was read and
parsed using the standard toolslex andyacc. Each input file can have a comment that begins with
a number sign (#) and continues till the end of the line. The programs were designed so that each
program reads input from the standard input and writes the results to the standard output. This enables
establishing a pipeline of commands using the pipe operator|. However, in some programs, input is



Organization of The Programs 85

taken through files that are to be specified at the command line. All errors are written to standard
error.

Source Compilation
Each of our programs is generally a multifile C program involving lex and yacc specification files,
common header files and program specific files. For efficient compilation, each program has an
associated makefile in its directory. The make file makes the compilation of the programs efficient,
since we don’t have to retype the commands and only those parts that are required to be recompiled
are recompiled. In each directory, simply typing “make” invokes a program that reads the makefile
and issues appropriate commands if some files are out of date.

Source Code Maintainance
In order to maintain the previous versions of the source files, the Revision Control System (RCS) is
used. RCS allows us to store all the previous versions of the source file efficiently, since it does not
replicate the entire file but only stores the changes. Also, it allows us to retrieve any of the earlier
versions of the files and also automatically numbers each version for easy reference. To modify a
certain source file say “parse,”we first need to “check out” that file from the RCS system and lock it.
This can be done using the following commands:

$ co -l parse

Now the file “parse” can be modified. Once the changes are made, the file must be ‘checked in”
the RCS system. This can be done using the command:

$ ci parse

This command adds the modified file to the RCS system and deleted the file “parse.” All the
previous and this new version of the file will reside in a file “parse,v” in the same directory.

To simply view the latest version of the file without modifying it, use the command:

$ co parse

Apart from these basic RCS commands, there are many other command in the RCS system. One
of the benefits of the RCS system is that the “make” utility for building the programs knows about
RCS. Thus, if it expects to see a file “parse” and does not find one, then it will automatically extract
the latest version of the file “parse” from “parse,v” and use it. After the compiling has been done, all
these extracted files and other intermediate files are deleted by the command:

$ make clean

Help and Documentation
All the programs are organized in a directory structure with a separate directory for each program.
Each directory has an optional file “algorithm” that explains in brief the algorithm for that program.
The program source code itself is also sufficiently documented. Apart from that, online documenta-
tion is available in the format of theUNIX Manual Pages. The manual pages for all the programs are
written using thegroff text formatting language and are available in themanpagesdirectory. They
can be accesses by the command like:

$ man ./sheuristic.1 ......................... man page for sheuristic

❑ ❑ ❑



IV
IMPLEMENTATION DETAILS



CHAPTER 12
Brute Force Implementation on PARAM

10000 Supercomputer

The most straightforward method of finding the densities is to generate a list of all the acyclic paths
in the graph and then try to “fit” them together manually. However, this method does not always
give the minimum density. To find the exact densities, we need to check all possible node listings i.e.
we should go by the brute force method. For this purpose, we have implemented parallel programs
that find density by an exhaustive search of the solution space. These programs were implemented
using both theParallel Virtual Machineand theMessage Passing Interface. They were executed on
thePARAM 10000 Supercomputerat theNational PARAM Supercomputing Facilityof theCenter for
Development of Advanced Computing.

12.1 Sequential Brute Force Algorithm

The basic method of finding the node listings by the brute force method is to first find some known
density by the heuristic methods and then to try out all the possible combinations of the node listings
of that length. Thus, if we have a known densityd of the graph then, we consider all the permutations
of an array of lengthd×n. For each permutation, we find the density and then calculate the minimum.
Thus, the basic program is given in Algorithm 9

In this algorithm, there arek = d × n nested for loops, one for each position in the array of
the nodes. Since in a minimal node listing, two consecutive nodes will never be the same, all such
permutations are eliminated by theif statements following thefor statements. It is clear that, because
of too many nested for loops, this program will take a long time if run on a sequential machine. Also,
the nested loops are essentially independent. This independence motivates us to run the program on
a parallel machine so as to speed up the execution. So, we decided to run this program using PVM
on PARAM 10000 Supercomputer.
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/* k is the length of the array for node listing */
/* i.e. k = d * N, N being the number of nodes */
/* The nodes in the graph are numbered as 0, 1, ..., N -1 */
int L[k];

for(L[0] = 0; L[0] < N; L[0]++)
for(L[1] = 0; L[1] < N; L[1]++)

if(L[1] != L[0])
for(L[2] = 0; L[2] < N; L[2]++)

.

.

.
for(L[k-1] = 0; L[k-1] < N; L[k-1]++)

if(L[k-1] != L[k-2])
{

check whether L has a node listing.
if( yes )
{

find its density in ‘this density’.
if(this density < current density)
{

current density = this density;
current nl = this node listing;
}
} /* end if( yes ) */
} /* end of the body of the for loops */

Algorithm 9: Sequential brute force algorithm

12.2 Implementation with Parallel Virtual Machine

PVM (Parallel Virtual Machine) is a software environment for heterogeneous computing (i.e. the
underlying processors on which the processes execute may not be identical). It allows a user to create
and access a parallel computing system made from a collection of distributed processors, and treat
the resulting system as a single virtual machine (hence the name, parallel virtual machine).

The hardware in a user’s virtual machine may be single processor workstations, vector machines
or parallel supercomputers or any combination of those. The individual elements may all be of a
single type (homogeneous) or all different (heterogeneous) or any mixture, as long as all machines
used are connected through one or more networks. These networks may be as small as a LAN
connecting machines in the same room, as large as the Internet connecting machines across the world
or any combination. This ability to bring together diverse resources under a central control allows
the PVM user to divide a problem into subtasks and assign each one to be executed on the processor
architecture that is best suited for that subtask.

PVM is based on the message-passing model of parallel programming. Messages are passed
between tasks over the connecting networks. User’s tasks are able to initiate and terminate other
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tasks, send and receive data, and synchronize with one another using a library of message passing
routines. Tasks are dynamic (i.e. can be started or killed during the execution of a program), even
the configuration of the virtual machine (i.e. the actual machine that are part of your PVM) can be
dynamically configured.

In order to parallelize the program, we decided to use the master–slave paradigm. out of thed×n
for loops, the master will process some outer for loops and the remaining for loops will be processed
by the slaves. Thus, in effect, the master will calculate prefixes of the permutations and send them to
the slaves. The slaves will then find out permutations having that prefix and find densities for them.
This is shown in figure 12.1.

Prefix (Sent by the Master) Remaining combinations(Checked by the Slave)

Array with d× n elements

Figure 12.1: Parallelization of the brute force program

If n is the number of nodes andp is the length of the prefix that the master will send to each
slave, then the number of different prefixes possible is given by the formula:

Number of prefixes =n× (n− 1)(p−1)

In the PVM program, we assign a seperate slave corresponding to each prefix, and so the number
of slaves will be the same as the number of prefixes.

The different files which are used in the implementation are:

1. common.h This file contains declarations of some constants that are to be set according to the
graph. These constants are:

• noOfNodesToSendReceive – It specifies the length of the prefix of the nodelisting to be
sent from the master to slave

• noOfNodes – It specifies the number of nodes in the graph

• fileName – It specifies the name of the file to which the output of the program and the
timing information is to be stored

• maxDensity – It specifies the expected maximum density of the graph

2. constants.h This file specifies the maximum allowed values of some parameters.

• MAX NODES – Maximum number of nodes allowed in the flow graph

• MAX PATHS – Maximum number of paths allowed in the file

• MAX NO OF TASKS – Maximum number of tasks which can be spawned

3. gen density.c This file generates a file density.c, which contains a user defined function den-
sity(), which calculates the density of a node listing. The file “density.c” is “# include”ed in
worker.c

4. gen nodestosend.c It generates a file nodestosend.c, which has the function nodestosend().
This function determines what sequence of prefix nodes should be sent to each child task. The
file “nodestosend.c” is “# include”ed in master.y
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5. master.y Calculates the density of the graph whose non-redundant acyclic paths are stored in
temp.paths.

6. worker.c It receives the number of paths and the actual paths from the master. It also receives
the prefix of the nodelisting from the master. It then constructs all possible node listings having
that prefix and finds their density. Returns the minimum density found to the master.

12.3 Implementation with Message Passing Interface

After the implementation of the brute force program using a Parallel Virtual Machine, it was decided
to re-implement the program using the Message Passing Interface library as more speed was required.
The MPI Library has much less overhead than the PVM like the absence of a daemon for messag-
ing, use of shared memory for exchanging the messages between processes on the same nodes etc.
Secondly, the implementation of the MPI library has been further optimized specially for PARAM at
CDAC by removing extra layers. Even with MPI, for large graphs, the program may take a long time
to run. For such large experiments, it is necessary to have the following features.

1. The program must periodically save its state in some data file so that in case of reboots, it can
begin from the point it left, so that the computations are not lost.

2. For compute intensive algorithms like ours, it would inefficient to spawn as many processes as
required. The number of processes must be limited and the work distributed among them.

3. Do as much processing as possible statically, i.e. before the program runs.

In the MPI implementation, we have provided all these features and also have applied some
optimizations that may decrease the amount of work to be done by as large as 99.75% This imple-
mentation was done by Rahul U. Joshi.

A parallel program consists of a number of processes running on different processors (or nodes)
and working simultaneously to solve a problem. For synchronization between these processes, they
need to communicate with each other. Thismessage – passingparadigm of parallel computing is
the most widely used parallel programming paradigm. The Message Passing Interface (MPI) is an
application programming interface (API) that defines a standard interface with which message pass-
ing programs can be written and run on a variety of distributed systems. In this application, we use
the master – slaveparadigm, with the master distributing the work among the slaves and collect-
ing results from them. Also, since there are two different programs, the program is essentially a
multiple instruction multiple data (MIMD)style of program, so that we need to use an MPI Applica-
tion Schema. Information about some representative MPI functions used in the program in given in
Appendix C. More information about MPI can be found in [25].

The MPI implementation for finding exact densities is actually a program generator that will
generate the programs to find the node listings and the densities by brute force method using the
Message Passing Interface. The program generator needs to be supplied with some parameters by
setting the values of some constants in the fileconstants.h. The parameters are as follows:

1. The maximum number of acyclic paths in the graph (MAX PATHS).

2. The number of nodes in the graph (NUM NODES).
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3. The known density of the graph (DENSITY).

4. The length of the prefix of the permutation that will be sent to the slave (PREFIX LEN).

5. The number of slaves (NUM SLAVES).

6. The name of the data file in which the intermediate results will be saved (SAVE FILE).

7. The name of the source file containing the paths in textual form (PATH SOURCE).

8. The name of the data file in which the paths will be saved (PATH DATA).

9. The time for which the update thread of the slave will sleep (UPDATE SLEEP).

10. The time for which the save thread of the master will sleep (SAVE SLEEP).

11. The number of nodes of the prefix to be examined for validity (OPTIMIZATION FACTOR).

12. Flag for whether to favor time or speed when generating the initial results (FAVOR TIME).

13. Flag to enable/disable debugging messages (NL DEBUG).

14. Whethermutexexare to be used for synchronization among the threads or not (USE MUTEX).

Once you know these constants, change the#define statements in theconstants.h file and then
run the shell scriptgen.sh. This shell script will run the needed program generators and will generate
the executable files for the master (master) and the slave (slave). It will then ask for the directory
in which to save the generated executables and other files. In that directory, it will save the following
files:

1. constants.h – So that you know what the settings were for the programs in the directory.

2. master, slave – The master and the slave executables.

3. init results – Program to generate the initial permutations and save them in the data file.

4. data anal – Program to read the saved data and display it.

5. density.schema – The MPI application schema description file.

6. show paths – Program to display the paths in the paths data file.

7. gen paths – Program to read the path source and generate path data file.

8. numpaths.h, prefixes.h – header files for these parameters

9. path source, path data and the results data files.

To run the MPI Program, just typempirun density.schema in the corresponding directory. The
master will continuously save the status of each slave in the data file. So, in case the program is
interrupted, it can begin at the point it was left in the next run, so that the intermediate results are not
lost.
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12.3.1 Logic and Algorithm for MPI Implementation

We have seen that, in general we have more prefixes and less slaves, so we have to distribute the prefix
to the slaves dynamically and a slave may have to process more than one prefix. Secondly, the other
consideration is that the program may run for a long time and in case the system reboots, we will
lose our intermediate results and it is not feasible to restart the calculations again. For that purpose,
the slaves must periodically convey to the masters the stage of calculation that they have reached and
the master must also periodically save this data in some file so that in case of a reboot/crash, the
calculations can begin from the point that was last saved, so that not much of the computations are
lost.

Here is a description of how the MPI program operates.

1. First, whenever the master starts, we don’t want to have the overhead of reading and parsing
the text file containing the paths. So we have a separate program for that purpose. It reads
the text file (path source file) containing textual description of the acyclic paths in the graph
and saves that description into a raw or binary format in the path data file. It also creates a
header filenumpaths.h that define the actual number of paths in the graph. Thus, now the
master, at each startup, need simply read the raw path data into an array and need not parse
the input. Secondly, since the number of paths are now known, we need allocate only that
much memory and the master need not convey the slaves the number of paths. This makes the
program memory efficient.

2. We want that in case of reboot/crash, the program must start from the point it was before the
last save. Secondly, the prefixes to be sent to the slaves need to be generated only once, not
each time the master starts. For that purpose, the process of generating the initial prefixes has
been separated out into another programinit results. This program generated the prefixes to be
sent and saves the results into the data file for results. Thus, the master need only read this file
into an array and need not calculate the prefixes each time it starts. Theinit results program
initializes the nodes other that the prefix nodes to 0. When the master runs, it continuously
updates these other nodes to whatever permutation the slave last reported. The program is
designed such that the next time it runs, it will start from this permutation.

3. Since these results are stored in a binary form, a data analyzerdata anal is provided that can
display the saved results file in human readable format.

4. The master and the slave program operate as follows.

(a) First, the master reads all the paths in the graph and broadcasts them to all the slaves.

(b) Then, the master send the slaves the permutations to operate on. While sending the per-
mutations, the master may come across a situation that all the slaves have been assigned
some permutation to work on and no slave is available to process the next permutation.
In that case, it waits for one of the slaves to finish its work and then send it the next
permutation. This continues until all the permutations are assigned to some slaves.

(c) In between, the master may receive update messages from the slaves. It updates the cor-
responding data in its array. These update messages are sent periodically by an “update”
thread in the slave and also when the slave find a node listing of a density lower than what
it has found till that time
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(d) Finally, when all the permutations are assigned, the master waits for all the slaves to finish
and send their results. It then calculates the density and displays it. Also, it saves the result
data so that you can later look at it.

(e) A thread in the slave, the “update” thread, continuously send update messages to the
master about the status of the current computations.

(f) A thread in the master, the “save” thread, continuously saved the intermediate results of
the computations in the save data file so that they are not lost.

The algorithms for the master and the slave are given in the following.
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1. Read the paths data from the paths data file and broadcast it to all the slaves using
MPI Bcast().

2. Initialize the state of each slaves (slave[i]) as IDLE.

3. Read the initial permutations from the results data file.

4. while There is an unprocessed and unassigned prefix p do
Find an IDLE slave;
if IDLE slave available then

Send p to the IDLE slave with tag TAG RESULT using MPI Send();
Mark the slave as WORKING and the prefix as assigned;

else
Probe for any messages from slaves using MPI Probe();
if a TAG UPDATE message is received, update the result;
if TAG DONE message received then

Receive the result using MPI Recv() and mark it as final;
Send that slave the prefix p with a TAG RESULT message;
Mark prefix p as assigned;

end if
end if

end while

5. /* At this stage, all prefixes are distributed among the slaves */
still working = the number of working slaves;
while still working 6= 0 do

Probe for a message from any of the slaves;
if TAG UPDATE message is received, update the result;
if TAG DONE message is received then

Receive the result and mark it as final;
Send a TAG END message to that slave;
Mark the slave as KILLED and reduce still working by 1;

end if
end while

6. Save the final results in the data file. Find the density from the results received from
the slaves and display it.

Algorithm 10: Master Program for MPI Implementation
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1. Receive the paths and the initial permutation from the master;

2. while true do
Probe for any message from the master;
if TAG RESULT is received then

Find the density and send a TAG DONE message to master;
While finding the density, whenever a new low is attained, send a TAG UPDATE
message to the master;

else
/* TAG DONE message was received */
Clean up the update thread ;
exit;

end if
end while

Algorithm 11: Slave program for MPI Implementation
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12.4 Some Optimization Heuristics

12.4.1 Skipping Redundant Permutations

This is a dynamic optimization in the sense that its efficacy depends upon the actual runtime con-
ditions and cannot be predetermined easily. The basic idea behind this optimization is as follows.
Let L0, L1, . . . , Lk−1 be some permutation that the program checks. Let us assume that the pro-
gram finds a node listing in this permutation. Ifm is the length of the node listing found, then let
Li1 , Li2 , . . . , Lim be the node listing found. Now ifim < k − 1, then for all possible combinations
of Lim+1, Lim+2. . . . Lk−1, the same node listing will be found by the program and hence checking all
these permutations is redundant. So, checking these permutations must be avoided. For this purpose,
after the node listing has been found, we must find the first node from right that was in the node
listing i.e findim and then for allLi, i > im, setLi = N − 1 so that the loops forLi, i > im will be
skipped. Thus, the modified part of the program for this optimization is as in Algorithm 12.

check whether L has a node listing.
if( yes )
{

find its density in ‘this density’.
if(this density < current density)
{

current density = this density;
current nl = this node listing;
}

/* find the last node in the node listing */
for(i = k - 1; i >= 0; i++)
{ if L[i] was in node listing, break; }

i++;
for(; i < k; i++)

L[i] = N - 1;
} /* end if( yes ) */

Algorithm 12: Skipping Redundant Permutations

This optimization is useful when we have overestimated thelengthof the node listing. It is also
useful when we have overestimated the density. It can be easily seen that if we skip the lastt nodes of
the permutation, we have skipped(N−1)t permutations. Thus, more the amount of time the program
spends in thefor loop for finding the last node, more will be the optimization.

12.4.2 Reducing the number of prefixes

This optimization heuristic is based on the basic principle of tailoring the program according to the
actual paths to be checked. It can be seen that we can reduce the execution time of the program if we
can eliminate some of the prefixes, declaring that these prefixes need not be considered. We first find
those nodes that are the first nodes in some path being considered. For example, in the path,
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0 2 3 4 1; 3; 1;

the node 0 is considered in the “initial” traversal, so the first node is node 2. Once we find the
set of the first nodes in the paths, we say that a prefixp is a “valid prefix” if it has at least one node
which is a first node. Otherwise, we say that the prefix is “invalid prefix.” Now, we say that when
finding the density by the brute force method, we need not consider the invalid prefixes. The reason
is as follows.

Let p be the length of prefix andk be the length of the remaining permutation being considered.
Then the permutation will containp nodes of the prefix followed by thek remaining nodes. Now
sincep does not have any of the first nodes, when mapping all the path, no node fromp will be
mapped. Thus, the node listing, if any, being generated from this permutation will be contained in the
k remaining nodes. Clearly, this node listing will also be generated by some other prefix which is a
valid prefix. For example, if the generated node listing begins with node 0, then the same node listing
will also be generated by all the valid prefixes having a 0 in them. Thus, any node listing generated
by an invalid prefix is also generated by some valid prefix. Thus, one may discount all the invalid
prefixes. This heuristic cannot be applied to spiral graphs. Forgadbad.2, this heuristic reduces the
number of prefixes from 12696 to 6540.

The above heuristic logic can be extended even further. What we are really doing in the above
logic is that we are ensuring that in any valid prefix, at least one of the nodes will be mapped when
tracing the paths. Now, suppose that the first node in the prefix to match some node is node 1. Thus
the 0th node does not contribute to the node listing, creating a “gap.” Thus, we could have done
without checking this prefix. Thus, in some way we need to avoid the gaps in the node listings. If the
logic for avoiding the gaps is incorporated in the slaves, then they may cause too much overhead and
slow down the entire process. Hence, we will incorporate this logic into the prefix generation only
(as it will be done only once). The basic theme of this heuristic is to avoid a “gap” in the prefix itself.
Thus, when a prefix of lengthp is generated, we trace all the path into the prefix and see whether
all the nodes in the prefix are being traced. If yes, the prefix is valid, else it is not valid. The exact
algorithm is given in Algorithm 13.

1. For each path, initialize a pointer ptr(p) that points to the first node in that path.

2. for each node n in the prefix do
valid = false;
for each path p in the graph do

if ptr(p) 6= end of path and ptr(p)→ node == n then
valid = true;
ptr(p) = next node of the path p;

end if
end for
if valid == false then

prefix is invalid, discard it;
end if

end for

3. If no invalid node n is found, then the prefix is valid.

Algorithm 13: Heuristics for reducing the number of prefixes
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In this algorithm, each noden of the prefix is checked for validity. Depending on the amount of
optimization desired, one many choose to check lesser nodes for validity when deciding the validity of
the prefix. We have implemented these heuristics and the user may choose the amount of optimization
by setting the constantOPTIMIZATION FACTOR (o) in file constants.h. This factor must not be
greater thanPREFIX LEN(p). The heuristic will check only the firsto nodes out of the prefix of
lengthp when checking the validity of the prefix.

The following table gives some data about the efficacy of this heuristic.

Number of
Nodes

Prefix
Length

Optimization
Factor

Prefixes before
optimization

Prefixes after op-
timization

Reduction
%

3 2 2 12 4 66.66
6 5 5 3750 516 86.24
24 3 3 12696 125 99
24 4 4 292008 625 99.79
24 5 5 6716814 3128 99.95

From the table, it can be easily seen that this optimization given a large reduction in the compu-
tational effort required. Also, it can been seen that as the number of nodes and the length of the prefix
is increased, the reduction in the number of prefixes increases, so the “larger” the problem, more is
the optimization. Thus, the heuristic “scales up” as the problem becomes larger, which is a desirable
property.

These heuristics were incorporated into the MPI program. For a comparative study of MPI vs.
PVM, the MPI program was re-implemented using the same heuristics and the same logic, but using
PVM calls for message passing instead of MPI.

❑ ❑ ❑



CHAPTER 13
GUI Front End using GTK+/ GNOME

As a part of this project, we have developed a set of tools for working with flow graphs. However, it
may be inconvienent for the user to type the commands on the shell prompt. So, for userfriendliness,
we have developed a graphical user interface for these tools. This chapter describes the UI developed
using the GTK+/GNOME widget toolkits. This UI was developed by Rahul Joshi. Here, we briefly
describe the functionality of this UI.

13.1 The Main Window

To start the GUI program, execute thegnome gui program. When the program starts, it will display
a main window as shown in figure 13.1.

There a number ofpanelsin which the user can open files for viewing or editing. The normal
open, save, close, newfunctionalities have been provided with theFile menu. Some of the frequently
used commands are accessible from thetoolbar below the menu bar. TheSettings menu lets the
user choose thefont size, tab positionsand word wrap options. TheAbout menu displays some
information about the program. Here is a description of all the menu items in the menu.

• File

– New – Create a new file

– Open – Open a file for analysis

– Save – Save the file to disk

– Close – Close the current file

– Close All – Close all the files

– Exit – Exit the program

• Operations

– Paths
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Figure 13.1: The main window of the GNOME UI

∗ Back Paths – Generate all the paths in a graph beginning with a back edge
∗ All Paths – Generate all the paths in a graph
∗ Elimpaths – Generate a list of nonredundant paths

– Maximal RFG

∗ Dominator Tree – Find the dominator tree of a graph
∗ Depth of Maximal RFG – Find the depth of a Maximal RFG
∗ Maximal RFG – Construct a Maximal RFG from its domiantor tree
∗ Check for Maximal RFG – Check whether the given graph is a maximal RFG or not
∗ Spiral Graph – Construct a spiral graph
∗ Check for Spiral Graph – Check whether the given graph is a subgraph of some spiral

graph

– Heuristics

∗ Original Heuristics – Find node listing using heuristics
∗ Majority Merge – Find node listing using majority merge
∗ Simplified Heuristics – Find node listing using simplified heuristics

– Node Listings

∗ Verify Nodelisting – Verify the node listing
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∗ Verify Nodelisting (Trie) – verify the node listing usingtrie method

– Miscellaneous

∗ Acyclic Ordering – Find acyclic ordering

∗ Dfnize – Dfnize the flow graph

∗ Check Reducibility – Check for reduciblity of a flow graph

∗ Check Subgraph – Check sibgraph relationship

– Manual Density – not implemented

• Settings

– Font – Set font size to small, medium or large

– Tab Positions – Set tab positions to left, right, top or bottom

– Word Wrap – Toggle word wrap setting

• Help

– Help – Displays HTML help about the programs in Netscape Navigator.

– About – Display information about the application

13.2 Working With Graphs

The various operations that can be performed using this program are available under theOperations
menu. These operations correspond to the programs that we have listed previously in chapter 16.
When an operation is selected, a popup dialog box is displayed wherein the user specifies the input
and output files, as showin in figures 13.2 and 13.2. A brief description of the operation is also
mentioned in the dialog box. If the user wishes so, the output will be displayed in the active panel, if
the corresponding check box is checked.

The program uses thesystem() function call of the standard C library to execute the programs.
Apart from that, extensive error checking has been implemented to prevent errors.
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Figure 13.2: A dialog box for two input files

Figure 13.3: A dialog box for a single input file
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13.3 Programming Details

This user interface was built using awidget toolkitavailable under Linux called as GTK+, which
stands for GIMP Toolkit. This library provides a set of UI objects calledwidgetsusing which we
can build the user interface and a method of installingcallback functionsfor responding to the users
interactions. Built on the top of the GTK+ library is the GNOME library that provides some additional
widgets and routines for building consistent user interfaces under the X Window System. Apart from
the pre–built widgets, this library also provides commonly used UI items like file selection dialogs,
toolbars, status bars, message boxes. The programming language used was C. We cannot describe in
detail the implementation of the UI, but more information about GTK+ and GNOME can be found in
[46, 20, 17, 34].

❑ ❑ ❑



CHAPTER 14
Graphical User Interface using Qt

14.1 About Qt

Qt is a cross-platform C++ GUI application framework. It provides application developers with all the
functionality needed to build graphical user interfaces. Qt is fully object-oriented, easily extensible,
and allows true component programming. Since its commercial introduction in early 1996, Qt has
formed the basis of many thousands of successful applications worldwide. Qt is also the basis of the
popularKDE Linux desktop environment, a standard component of all major Linux distributions. Qt
is a product of Trolltech.
Qt is supported on the following platforms:

1. MS/Windows - 95, 98, NT, and 2000

2. Unix/X11 - Linux, Sun Solaris, HP-UX, Digital Unix, IBM AIX, SGI IRIX and a wide range
of others

3. Embedded - Linux platforms with framebuffer support.

14.2 Qt Object Model

The standard C++ Object Model provides very efficient runtime support of the object paradigm.
On the negative side, its static nature shows inflexibility in certain problem domains. Graphical
User Interface programming is one example that requires both runtime efficiency and a high level
of flexibility. Qt provides this, by combining the speed of C++ with the flexibility of the Qt Object
Model.
In addition to C++, Qt provides

1. a very powerful mechanism for seamless object communication dubbed signals and slots,

2. queryable and designable object properties,
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3. powerful events and event filters,

4. scoped string translation for internationalization,

5. sophisticated interval driven timers that make it possible to elegantly integrate many tasks in an
event-driven GUI.

6. hierarchical and queryable object trees that organize object ownership in a natural way.

7. guarded pointers, QGuardedPtr, that are automatically set to null when the referenced object is
destroyed, unlike normal C++. Pointers become ”dangling pointers” in that case.

Many of these Qt features are implemented with standard C++ techniques, based on inheritance from
QObject. Others, like the object communication mechanism and the dynamic property system, re-
quire the Meta Object System provided by Qt’s ownMetaObjectCompiler(moc). The Meta Object
System is a C++ extension that makes the language better suited for true component GUI program-
ming.

14.3 Signals and Slots

Signals and slots are used for communication between objects. The signal/slot mechanism is a central
feature of Qt and probably the part that differs most from other toolkits. In most GUI toolkits widgets
have a callback for each action they can trigger. This callback is a pointer to a function. In Qt, signals
and slots have taken over from these messy function pointers. Signals and slots can take any number
of arguments of any type. They are completely typesafe: no more callback core dumps!
All classes that inherit from QObject or one of its subclasses (e.g. QWidget) can contain signals and
slots. Signals are emitted by objects when they change their state in a way that may be interesting to
the outside world. This is all the object does to communicate. It does not know if anything is receiving
the signal at the other end. This is true information encapsulation, and ensures that the object can be
used as a software component. Slots can be used for receiving signals, but they are normal member
functions. A slot does not know if it has any signal(s) connected to it. Again, the object does not know
about the communication mechanism and can be used as a true software component. You can connect
as many signals as you want to a single slot, and a signal can be connected to as many slots as you
desire. It is even possible to connect a signal directly to another signal. (This will emit the second
signal immediately whenever the first is emitted.) Together, signals and slots make up a powerful
component programming mechanism.
A Small Example
A minimal C++ class declaration might read:
class Foo
(
public:
Foo();
int value() const return val;
void setValue( int );
private:
int val;
);
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A small Qt class might read:
class Foo : public QObject
(
QOBJECT
public:
Foo();
int value() const return val;
public slots:
void setValue( int );
signals:
void valueChanged( int );
private:
int val;
);
This class has the same internal state, and public methods to access the state, but in addition it has
support for component programming using signals and slots: This class can tell the outside world
that its state has changed by emitting a signal, valueChanged(), and it has a slot which other objects
may send signals to. All classes that contain signals and/or slots must mention QOBJECT in their
declaration. Slots are implemented by the application programmer. Here is a possible implementation
of Foo::setValue():
void Foo::setValue( int v )
(
if ( v != val )
(
val = v;
emit valueChanged(v);
)
)
The line emit valueChanged(v) emits the signal valueChanged from the object. As you can see, you
emit a signal by using emit signal(arguments). Here is one way to connect two of these objects
together: Foo a, b;
connect(a, SIGNAL(valueChanged(int)), b,SLOT(setValue(int)));
//note : a and b signify address of a and b respectively
b.setValue( 19 );
a.setValue( 79 );
b.value();
Calling a.setValue(79) will make a emit a signal, which b will receive, i.e. b.setValue(79) is invoked.
b will in turn emit the same signal, which nobody receives, since no slot has been connected to it, so it
disappears into hyperspace. Note that the setValue() function sets the value and emits the signal only
if v != val. This prevents infinite looping in the case of cyclic connections (e.g. if b.valueChanged()
were connected to a.setValue()). This example illustrates that objects can work together without
knowing each other, as long as there is someone around to set up a connection between them initially.
The preprocessor changes or removes the signals, slots and emit keywords so the compiler won’t see
anything it can’t digest. Run the moc on class definitions that contains signals or slots. This produces
a C++ source file which should be compiled and linked with the other object files for the application.
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14.3.1 Signals

Signals are emitted by an object when its internal state has changed in some way that might be
interesting to the object’s client or owner. Only the class that defines a signal and its subclasses can
emit the signal. A list box, for instance, emits both highlighted() and activated() signals. Most object
will probably only be interested in activated() but some may want to know about which item in the
list box is currently highlighted. If the signal is interesting to two different objects you just connect
the signal to slots in both objects. When a signal is emitted, the slots connected to it are executed
immediately, just like a normal function call. The signal/slot mechanism is totally independent of
any GUI event loop. The emit will return when all slots have returned. If several slots are connected
to one signal, the slots will be executed one after the other, in an arbitrary order, when the signal is
emitted. Signals are automatically generated by the moc and must not be implemented in the .cpp file.
They can never have return types (i.e. use void). Signals and slots are more reusable if they do not
use special types. If QscrollBar::valueChanged() were to use a special type such as the hypothetical
QRangeControl::Range, it could only be connected to slots designed specifically for QRangeControl.

14.3.2 Slots

A slot is called when a signal connected to it is emitted. Slots are normal C++ functions and can be
called normally; their only special feature is that signals can be connected to them. A slot’s arguments
cannot have default values, and as for signals, it is generally a bad idea to use custom types for slot
arguments. Since slots are normal member functions with just a little extra spice, they have access
rights like everyone else. A slot’s access right determines who can connect to it.
A public slots: section contains slots that anyone can connect signals to. This is very useful for com-
ponent programming. You create objects that know nothing about each other, connect their signals
and slots so information is passed correctly, and, like a model railway, turn it on and leave it running.
A protected slots: section contains slots that this class and its subclasses may connect signals to. This
is intended for slots that are part of the class’ implementation rather than its interface towards the rest
of the world.
A private slots: section contains slots that only the class itself may connect signals to. This is intended
for very tightly connected classes, where even subclasses aren’t trusted to get the connections right.
Of course, you can also define slots to be virtual. It is found to be very useful. Signals and slots are
fairly efficient.

14.4 Meta Object Information

The meta object compiler (moc) parses the class declaration in a C++ file and generates C++ code that
initializes the meta object. The meta object contains names of all signal and slot members, as well as
pointers to these functions. The meta object contains additional information such as the object’sclass
name. You can also check if an objectinherits a specific class,
for example:
if ( widget→inherits(”QButton”) )
//it is a push button, radio button etc.
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14.4.1 Using the Meta Object Compiler

The Meta Object Compiler is the program which handles theC++ extensionsin Qt The moc reads
a C++ source file. If it finds one or more class declarations that contain the QOBJECT macro, it
produces another C++ source file which contains the meta object code for this class. Among other
things, meta object code is required for the signal/slot mechanism, runtime type information and the
dynamic property system. The C++ source file generated by the moc must be compiled and linked
with the implementation of the class (or it can be included into the class’ source file).

1. The class declaration is found in a header (.h) file. If the class declaration above is found in
the file myclass.h, the moc output should be put in a file called moc-myclass.cpp. This file
should then be compiled as usual, resulting in an object file moc-myclass.o (on Unix) or moc-
myclass.obj (on Windows). This object should then be included in the list of object files that
are linked together in the final building phase of the program.

2. The class declaration is found in an implementation (.cpp) file If the class declaration above
is found in the file myclass.cpp, the moc output should be put in a file called myclass.moc.
This file should be included in the implementation file, i.e. myclass.cpp should include ”my-
class.moc” after the other code. This will cause the moc-generated code to be compiled and
linked together with the normal class definition in myclass.cpp, so it is not necessary to compile
and link it separately, as in Method 1.

Method 1 is the normal method. Method 2 can be used in cases where one for some reason wants the
implementation file to be self-contained, or in cases where the QOBJECT class is implementation-
internal and thus should not be visible in the header file.

14.4.2 Automating moc Usage with Makefiles

For anything but the simplest test programs, it is recommended to automate the running of the moc.
By adding some rules to the Makefile of your program, make can take care of running moc when
necessary and handling the moc output.

14.5 GUI for Node Listing Based Data Flow Analysis

The GUI for this project is written in Qt 2.1.0 under Linux. There is a basic main editor window
which provides the user with standard file operations like ‘open’, ’save’, ’save as’, ‘print’, ‘close’ and
so on. The operations to be performed on the graphs and/or their paths are available on the ‘graph
operations’ , ‘path operations’ and some ‘miscellaneous operations’ menus on the main menu bar.

The following operations are allowed on graphs

1. listing all paths

2. listing all paths beginning with backedges

3. dominance relationship of a graph

4. reduciblity check
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5. acyclic ordering of a graph

6. dfnize a graph

7. check for Max Rfg

8. check for Spiral Graph

The following operations are allowed on paths

1. elimation of redundant paths

2. majority merge heuristic algorithm for node listing

The following operations have miscellaneous inputs

1. construction of Max Rfg from Dominator tree

2. matrix construction

3. node listing of the graph

4. verify a node listing

5. checking for subgraph

6. simpified heuristic algorithm for node listing

7. construction of spiral graph

There is also a Help on programs’ menu which mainly provides information on each of the above
programs.The file main.htm gives the index to help and can be viewed through any browser. Learning
Qt and the development of the graphical user interface was done by Medha Trivedi.



CHAPTER 15
Software Used

In this appendix, we list all the software that was used during the project. The implementation plat-
form for this project was chosen asLinux, due to the availability of the large number of programming
tools as well as the toolslex andyacc. Here is a list of all the software that was used.

❏ Red Hat Linux versions 5.2, 6.1 and 6.2

❏ Sun Solaris 2.6

❏ GNU C Compiler (GCC)

❏ GNU C++ Compiler (G++)

❏ GNU Debugger (GDB)

❏ flex, fast lexical analyzer generator

❏ yacc, an LALR(1) parser generator

❏ GNU Make

❏ RCS (Revision Control System)

❏ GNU Awk, a pattern scanning and process-
ing language (GAWK)

❏ groff , a document formatting system for
manual pages

❏ LATEX2ε, a document preparation system

❏ BIBTEX, bibliography generation tool

❏ MakeIndex, an index generation tool

❏ dvips, a DVI to Postscript converter

❏ Ghostview, a Postscript and PDF viewer

❏ xfig, Facility for interactive generation of
figures under X11

❏ Qt, a cross–platform C++ GUI application
framework

❏ GTK+, The GIMP Tool Kit, a library for
creating GUI’s for X Window System.

❏ GNOME, a set of libraries and applica-
tion environment for developing consistent
GUI’s under X Window System

❏ Glade, a user interface builder for the
GTK+ toolkit

❏ Parallel Virtual Machine, PVM version 3.3

❏ Local Area Multicomputer (LAM), an MPI
programming environment

❏ LinuxThreads, a POSIX 1003.1c threads li-
brary



CHAPTER 16
Program Manual

As a part of this project, we have developed a library of tools for performing various operations on
flow graphs and obtaining the data needed for the experiments. The input (be it a graph, a dominator
tree, a list of paths etc.) is describes in a text file and it is first parsed by the program. The parser and
the lexical analyzer were automatically generated by using the toolsLexandYacc. In this appendix,
we list the manual for the tools and programs developed during the project. The programs were
developed by Rahul U. Joshi.

ENVIRONMENT
Two environment variables affect the functioning of these program. If the environment variable“N-
L DEBUG” is set and is not“FALSE” , debugging mode is enables and the program produced debug-
ging messages. In case debugging mode is enabled, the debugging output goes to the file indicated
by the environment variable“NL DEBUG OP” or to the standard error if“NL DEBUG OP” is not
set.

EXIT CODES
All the programs, on successful execution return an exit codeEXIT SUCCESSand on failure return
an exit codeEXIT FAILURE . These macros are defined in the header filestdlib.h as1 and0
respectively. These exit codes can then be used in shell scripts to query the exit status of a program
by checking,

< some command >;

# Check the exit code of the command
if [ $? -ne 0 ]; then

echo "$0: Cannot execute command";
exit 1;

fi

COMMENTS
All the input files, whether containing a graph description, paths etc. are allowed to contain comments.
The comments are single line, they begin with a number sign (#) and continue till the end of the line,
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as follows

# This is a spiral (2b) graph of 4 nodes.
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ALLBACKPATHS

NAME

allbackpaths - Program to generate all acyclic paths in a reducible flow graph that begin with a back

edge.

SYNOPSIS

allbackpaths<input graph> > <paths file>

DESCRIPTION

allbackpathsis a program to generate all the acyclic paths in a reducible flow graph that begin with

a back edge. It takes as an input a description of the reducible flow graph from either a file or the

standard input. It generates the paths and writes then to the standard output. Along with the actual

path, it also prints the number of back edges and forward edges in the path. Each output line consists

of a single path in the following form:

Node1 Node2 ... NodeK ; NoOfBackEdges ; NoOfFwdEdges ;

BUGS AND INEFFICIENCIES

The program generates the same path more than once in its output, so probably there is some overhead

on other programs to look for identical paths in the output and neglect them.

SEE ALSO

allpaths, elimpaths, graphinput
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ACYCLIC

NAME

acyclic - Program to generate acyclic ordering of a reducible flow graph.

SYNOPSIS

acyclic<input graph> > <paths file>

DESCRIPTION

acyclic is a program to generate the acyclic ordering of a reducible flow graph. An acyclic ordering

of a reducible flow graph is a sequence of nodes (without repetitions) such that all the acyclic paths

in the flow graph that start with the initial node (the header) are a subsequence thereof. The program

takes as an input a description of the reducible flow graph from either a file or the standard input.

It generates the acyclic ordering and writes it to the standard output. Along with the actual acyclic

ordering, it also prints the (hypothetical) number of back edges and forward edges in the path. The

output has the following format:

Node1 Node2 ... NodeK ; NoOfBackEdges ; NoOfFwdEdges ;

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

allbackpaths, elimpaths, graphinput
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ALLPATHS

NAME

allpaths - Program to generate all acyclic paths in a reducible flow graph.

SYNOPSIS

allpaths<input graph> > <paths file>

DESCRIPTION

allpathsis a program to generate all the acyclic paths in a reducible flow graph (those that begin with

a back edge as well as those that begin with a forward edge). It takes as an input a description of the

reducible flow graph from either a file or the standard input. It generates the paths and writes then to

the standard output. Along with the actual path, it also prints the number of back edges and forward

edges in the path. Each output line consists of a single path in the following form:

Node1 Node2 ... NodeK ; NoOfBackEdges ; NoOfFwdEdges ;

BUGS AND INEFFICIENCIES

The program generates the same path more than once in its output, so probably there is some overhead

on other programs to look for identical paths in the output and neglect them.

SEE ALSO

allbackpaths, elimpaths, graphinput
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BRUTE

NAME

brute - Program to generate a C program that finds the density of a graph by using the brute force

method.

SYNOPSIS

brute <density> <no of nodes>

DESCRIPTION

brute is a program to generate a C program that finds the density of a flow graph by using brute force

method i.e. generating all possible node listing and finding the minimum density value. The program

takes two inputs from the command line, the known density of the graph and the number of nodes of

the graph. The program then generates a C function called “density()” that finds the density of the

graph by brute force method. This function consists of (density x no of nodes) nested for loops. To

use this function, append it at the end of the file“template parse” present in the same directory as

brute. Now compile the file using lex and yacc. A template makefile is also present in the directory.

This program now takes the list of paths in the flow graph as its input and finds the density. For more

information, read the “readme” file in the same directory asbrute.

BUGS AND INEFFICIENCIES

No bugs known, but the program ishighly inefficient. For even a moderate number of nodes, itcannot

be run sequentially on a single processor machine.

SEE ALSO

graphinput, elimpaths, heuristic, readme file in “brute” directory
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DEPTH

NAME

depth - Shell script to find the depth of a flow graph

SYNOPSIS

depth< <paths file>

DESCRIPTION

depthis a shell script to find the depth of a flow graph given the list of either all the acyclic paths in

the flow graph (as produced by the programallpaths) or the list of all acyclic paths that begin with a

back edge (as produced by the programallbackpaths).

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

allpaths, allbackpaths, elimpaths, graphinput



Program Manual 118

DEPTH-MAX

NAME

depth-max - Program to find the depth of a maximal reducible flow graph

SYNOPSIS

depth<dominator tree>

DESCRIPTION

depth-maxis a program to find the depth of a maximal reducible flow graph given the dominator tree

of the maximal rfg. The dominator tree is described in the same format as the output ofdominance.

The program finds the depth of the maximal rfg corresponding to that dominator tree and prints it on

the standard output. This program is much more efficient thatdepth, especially for maximal rfgs with

large number of nodes, as it may take a long time to generate all the acyclic paths that begin with a

back edge.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

depth, dominance, max-RFG
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DFNIZE

NAME

dfnize - Program to dfnize a flow graph i.e. replace each node by its dfn number.

SYNOPSIS

dfnize<graph file> > <dfnized graph file>

DESCRIPTION

dfnizeis a program to dfnize a flow graph i.e. replace each node in the flow graph by its dfn number.

The program takes as input the description of the graph to be dfnized and generates an isomorphic

graph by replacing each node of the input graph by its dfn number. Such a graph is normally easier

to work with because the edgem→ n is a back edge in such a graph only ifn ≤ m.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

graphinput
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DOMINANCE

NAME

dominance- Program to find the dominance relation in a reducible flow graph.

SYNOPSIS

dominance<input graph> > <dominator file>

DESCRIPTION

dominanceis a program to find the dominance relation in a reducible flow graph. It takes as its input

the description of the graph as described ingraphinputand produces as its output the dominator tree

of the flow graph. The output ofdominancehas the following format:

Node0 list of children of Node0 in dominator tree ;

Node1 list of children of Node1 in dominator tree ;

.

.

.

NodeK list of children of NodeK in dominator tree .

<root of the dominator tree>

In this output, the<root of the dominator tree > is nothing but the header of the

flow graph as specified in the input file. Also the list of the immediate children of a node in the output

is arranged according to the “natural” order of the children as described in the definition of a maximal

reducible flow graph.

BUGS AND INEFFICIENCIES

There was one, but it has been removed.

SEE ALSO

max-RFG, graphinput
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ELIMPATHS

NAME

elimpaths - Program to eliminate redundant paths from the input.

SYNOPSIS

elimpaths<paths file> > <non redundant paths file>

DESCRIPTION

elimpathsis a program to eliminate all the redundant paths from the input. That is the program takes

a list of paths and from it eliminates any redundant paths and produced a list of non-redundant paths

as its output. Thus, in the output, no path is a subsequence of any other path.

BUGS AND INEFFICIENCIES

Many were known, but all have been (hopefully) fixed.

SEE ALSO

Iallbackpaths, allpaths, graphinput
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EXE.SH

NAME

Exe.sh- Driver Shell script to find heuristic node listing.

SYNOPSIS

Exe.sh<graph file>

DESCRIPTION

Exe.shis a driver shell script to find the heuristic node listing of a flow graph. The graph is specified

as a command line argument. The shell script checks whether the graph is reducible, creates a list of

non-redundant paths in the flow graph that begin with a back edge and then finds the heuristic node

listing.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

heuristic, reducible, allbackpaths, elimpaths, graphinput
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GRAPHINPUT

NAME

graphinput - Description of the input format to describe a graph.

DESCRIPTION

This manual page describes the input format to describe a graph. Many programs take an input graph

and produce some results. The input description of the graph has the following form:

Node0 <list of successors of Node0> ;

Node1 <list of successors of Node1> ;

.

.

.

NodeK <list of successors of Nodek> .

<NoOfNodes> <Header> <Depth>

Comments can also be included in the input file. A comment begins with a sharp (#) and continue

till the end of line.

SEE ALSO

allbackpaths, elimpaths, graphinput
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HEURSITIC

NAME

heursitic - Program to find the node listing for a reducible flow graph using “heuristic” algorithm.

SYNOPSIS

heuristic <graph file> <paths file>

DESCRIPTION

heuristicis a program to find the node listing of a reducible flow graph by using the “heuristic” node

listing algorithm as given in Khedker Sir’s “Exe” file. The program takes as input the graph as well

as the list of paths in the graph that begin with a back edge. It then prints the generated node listing

to the standard output. The node listing is terminated with a period(.). You can directly append the

list of all the paths that begin with a back edge to the output and check for the validity of the node

listing using theverifynlprogram.

In case debugging is enabled, the program also prints the paths considered, the nodes added

during the construction of the node listing as well as the node listing in a tabular form to the debug

output stream. The program always gives the density of a flow graph as less then or equal to its depth.

BUGS AND INEFFICIENCIES

No bugs, but the node listing generated by the program is not the “optimal” or the “minimal” node

listing.

SEE ALSO

graphinput, allbackpaths, elimpaths, verifynl, sheuristic
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ISMAX

NAME

ismax - Program to find whether a flow graph is a maximal reducible flow graph or not.

SYNOPSIS

ismax<graph file>

DESCRIPTION

ismaxis a program to test whether the given flow graph is a maximal reducible flow graph or not. The

input is a description of the flow graph of the same format as described ingraphinput. The program

finds whether the input graph is a maximal reducible flow graph or not by adding edges not present

in the graph and testing whether the graph becomes irreducible or not. It then prints a message to that

effect on the standard output.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

graphinput, max-RFG
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ISSPIRAL

NAME

isspiral - Program to find whether a given flow graph is a subgraph of any spiral graph.

SYNOPSIS

isspiral <dominator file>

DESCRIPTION

isspiral is a program to find whether the given flow graph is a subgraph of some spiral graph having

the same number of nodes. The input is the dominator tree of the flow graph. The format of the

dominator tree is the same as the output ofdominance. The output of the program is a message

indicating whether or not the flow graph is a subgraph of some spiral graph.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

dominance, spiral
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MATRIX

NAME

matrix - Program to find the matrix of levels for a reducible flow graph.

SYNOPSIS

matrix <graph file> <non redundant paths file>

DESCRIPTION

matrix is a program to find the matrix of levels in a reducible flow graph. It takes the graph and the

list of non-redundant paths in the graph and constructs the matrix for that graph and prints it on the

standard output. The level 0 of the matrix is assumed to have all the nodes in the graph and hence it

is not printed. All the other levels are printed. Each output line has the following format:

Level { List of nodes in that level }

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

graphinput, allbackpaths, elimpaths
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MAX-RFG

NAME

max-RFG - Program to construct a maximal reducible flow graph.

SYNOPSIS

max-RFG<dominator file> > <maximal graph>

DESCRIPTION

max-RFGis a program to construct the maximal reducible flow graph given the dominator tree of

the flow graph. The format of the dominator tree is the same as the output ofdominance. Thus,

the program expects that the children of a node are listed in their “natural” order. The output of the

program is a description of the maximal reducible flow graph having the same format as described in

graphinput. Thus, if we construct the dominator tree of a given reducible flow graph usingdominance.

and then construct the maximal reducible flow graph for that dominator tree, we expect that the

original graph will be a subgraph of the maximal reducible flow graph.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

dominance, graphinput, subgraph
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MMHEURISTIC

NAME

mmheuristic - Program to find the node listing using themajority mergeheuristic.

SYNOPSIS

mmheuristic <path file>

DESCRIPTION

mmheuristicis a program to find the node listing of a flow graph by using theMajority Mergealgo-

rithm. The input is a list of the paths in the flow graph, in the same format as produced byallpaths.

The program does not neglect the first node in the path, so it is better to give the input from the output

of allpaths. It finds the node listing and also the density of that node listing and displays the results

on the standard output.

BUGS AND INEFFICIENCIES

None known as of yet, but the node listing produced is not the minimal node listing.

SEE ALSO

heuristic, sheuristic, Exe.sh, allpaths
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NL2B

NAME

nl2b - Program to find the node listing of a (2b) spiral graph.
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REDUCE

NAME

reduce- Program to reduce a reducible flow graph to minimum number of nodes by usingT2 type 1

transformations.

SYNOPSIS

reduce<graph input>

DESCRIPTION

reduceis a program to reduce a reducible flow graph to minimum number of nodes by usingT2

type 1 transformations. It takes as input the graph to be reduced and goes on applyingT2 type

1 transformations until no transformation can be applied. It then prints the resulting graph to the

standard output.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

graphinput



Program Manual 132

REDUCIBLE

NAME

reducible - Program to find whether a flow graph is reducible or not.

SYNOPSIS

reducible<graph file>

DESCRIPTION

reducibleis a program to test whether the given flow graph is reducible or not. The input is a descrip-

tion of the flow graph of the same format as described ingraphinput. The program finds whether the

input graph is reducible or not by repeated applications ofT1 andT2 transformations. It then prints a

message to that effect on the standard output.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

graphinput
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SHEURISTIC

NAME

sheuristic - Program to find the node listing for a reducible flow graph using “simplified heuristic”

algorithm.

SYNOPSIS

sheuristic<graph file> <paths file>

DESCRIPTION

sheuristicis a program to find the node listing of a reducible flow graph by using the “simplified

heuristic” node listing algorithm. The program takes as input the graph as well as the list of paths in

the graph that begin with a back edge. It then prints the generated node listing to the standard output.

The node listing is terminated with a period(.). You can directly append the list of all the paths that

begin with a back edge to the output and check for the validity of the node listing using theverifynl

program.

In case debugging is enabled, the program also prints the paths considered, the nodes added

during the construction of the node listing as well as the node listing in a tabular form to the debug

output stream. The program always gives the density of a flow graph as less then or equal to its depth.

The program uses a more efficient and simple algorithm thanheuristic, and hence the program is

much better.

BUGS AND INEFFICIENCIES

No bugs, but the node listing generated by the program is not the “optimal” or the “minimal” node

listing.

SEE ALSO

graphinput, allbackpaths, elimpaths,verifynl
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SPIRAL

NAME

spiral - Program to generate a spiral graph.

SYNOPSIS

spiral <node order>

DESCRIPTION

spiral is a program to generate a spiral graph given the order in which the nodes are added and also

the rules by which the nodes are added. The order and rules are described in the input file in the

following format:

Initial node

<rule> node1;

.

.

.

<rule> nodek;

where<rule> can be either ‘a’ or ‘b’ corresponding to rules (2a) and (2b). The “Initial node” is

always added using rule 1. Then the nodes are added in the order node1, node2, ..., nodek using the

rule corresponding to that node.

The program does not generate the spiral graph directly. Instead, it generates the dominator tree

of the spiral graph in which all the children of a node are arranged in their “natural” order. The format

of the output dominator generated by the program is described indominance. Once the dominator

tree of the spiral graph is generated, the spiral graph can be generated using themax-RFGprogram.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

graphinput, dominance, max-RFG
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SUB OF SPIRAL

NAME

sub of spiral - Program to check for a subgraph of a spiral graph.

SYNOPSIS

sub of spiral <graph description>

DESCRIPTION

subof spiral is a program to find whether the given graph is a subgraph of any spiral graph with the

same number of nodes. It is a “brute–force” program, generating all the spiral graph and checking

whether the given graph is a subgraph of any one of them. It generates all the spiral graphs having

the given number of nodes by,

1. Generating all permutations of the nodes from0 . . . n−1. The nodes will be added to the spiral

graph in the order in which they appear in the permutation.

2. For a given permutation, adding the first node using rule (1) and adding the other nodes using

all possible combinations of rules (2a) and (2b).

Thus, forn nodes, the program generates a total ofn! × 2n−1 spiral graph and checks each

of them. This program was written to give an experimental contradiction to the statement “Every

reducible flow graph ofn nodes is a subgraph of some spiral graph ofn nodes.”

BUGS AND INEFFICIENCIES

None known as of yet, but the brute force nature makes the program too inefficient. For efficient

verification of subgraphs of spiral graph, use the programisspiral.

SEE ALSO

graphinput, spiral, isspiral
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SUBGRAPH

NAME

subgraph - Program to check subgraph relationship.

SYNOPSIS

subgraph<super graph> <sub graph>

DESCRIPTION

subgraphis a program to check subgraph relationship between two graph. It takes as input two

graphs, a “super graph” and a “sub graph”. It then checks whether the “sub graph” is a subgraph

of the “super graph” and prints a message to that effect. The input graphs must be described in the

format as described ingraphinput.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

graphinput, max-RFG, dominance
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VERIFY-ELIMPATHS

NAME

verify-elimpaths - Program to verify the list of non-redundant paths.

SYNOPSIS

verify-elimpaths <paths file>

DESCRIPTION

verify-elimpathsis a program to verify that the list of non-redundant paths as produced byelimpaths

is indeed correct. Thus, it is used to cross check the output ofelimpaths. The input file is divided into

two sections by a percent (%) sign as follows:

<List of non - redundant paths>

%

<List of all the paths>

The first section is a list of all the non-redundant paths and the second section is the list of all the

paths from which the list of non-redundant paths was produced. The program verifies the list by first

reading the list of all the non-redundant paths and checking that no path in this list is a subsequence

of any other path in the list. If it comes across such a situation, it declares the list as invalid. After

that, it starts reading the list of all the paths and checks that every path in this list is a subsequence of

some path in the first list. If it finds some path in the second list which is not a subsequence of any

path in the first list, it declares the list as invalid, else it declares the list as valid.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

allbackpaths, elimpaths
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VERIFYNL

NAME

verifynl - Program to verify the node listing.

SYNOPSIS

verifynl <node list file>

DESCRIPTION

verifynl is a program to verify that the given node listing for a graph is indeed a node listing for the

graph. The input file had the following format:

NodeListing.

<List of paths>

The first part consists of the node listing terminated by a period(.). Following the node listing is

the list of all the paths beginning with a back edge. This list can be the one that is produced either

by allbackpathsor elimpaths. The program verifies the node listing by checking that every path in

the list of paths is a subsequence of the node listing. Once the node listing is verified, it also prints

the maximum value of the density of the graph by counting the maximum number of times the node

appears in the node listing.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

allbackpaths, elimpaths
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VERNL-TRIE

NAME

vernl-trie - Program to verify the node listing.

SYNOPSIS

vernl-trie <node list file>

DESCRIPTION

vernl-trie is a program to verify that the given node listing for a graph is indeed a node listing for the

graph. The input file has the same format as mentioned inverifynl. Once the node listing is verified,

it also prints the maximum value of the density of the graph by counting the maximum number of

times the node appears in the node listing. This program uses a data structure calledtrie for verifying

the node listing and theoretically is more faster thanverifynl.

BUGS AND INEFFICIENCIES

None known as of yet.

SEE ALSO

allbackpaths, elimpaths, verifynl



CHAPTER 17
Algorithms

Finding the acyclic ordering of a flow graph

1. Read the input graph and perform a depth first traversal on it to find the depth first
numbers of the nodes.

2. Calculate in “indegree” of each node by without considering the self loops and the back
edges. This is because acyclic ordering is found out on a graph with no back edges
and self loops are back edge by definition.

3. Find a node in the graph with indegree = 0. If no such node can be found, then probably
there is an error in the input graph, it may not be reducible.

4. List that node in the acyclic ordering. Make the indegree of that node as −1 so that it
is not processed during the next iteration.

5. Decrease the indegree of all the successors of that node by 1, again without consider-
ing self loops and back edges.

6. Repeat the steps 3 to 5 until all the nodes are listed.

Algorithm 14: Finding the acyclic ordering of a flow graph
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Checking the reducibility by T1-T2 transformation

We know the algorithm for checking flow graph reducibility by repeated application of T1 and
T2 transformations. In this program, we use a modified form of this algorithm which does
not require the application of T1 transform and the T2 transforms are applied “incrementally”
so that many of the repeated calculations are avoided. Thus this algorithm is more efficient
than the earlier one.

1. Read the graph from the input. During the reading step itself, eliminate self loops.
Thus here we are applying a T1 transformation implicitly.(However, after this step, we
never need to apply a T1 transformation.)

2. Initialize the number of predecessors array to 0. This array stores the number of pre-
decessors of each node.

3. for each edge i→ j in the graph do
increment noOfPredecessors(j);
remember i as the predecessor of j by setting thePredecessor(j) := i;

end for

4. Find a node n not the initial node and having a singe predecessor m. If such a node
cannot be found, end the computation.

5. Remove the node n from the graph and set noOfPredecessors(n) = 0.

6. for each edge n→ i, i 6= m in the graph do
if there is an edge m→ i then

decrement noOfPredecessors(i);
end if
add the edge m→ i in the graph;
set thePredecessor(i) := m;

end for

7. if there was an edge n→ m in the original graph then
decrement noOfPredecessors(m);
if n is the predecessor of m that we have remembered then

thePredecessor(m) := some other predecessor of m.
end if

end if

8. Go to step 4.

Algorithm 15: Checking reducibility byT1-T2 transformations
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Generate all the paths in a reducible flow graph

In this algorithm, we maintain a stack of nodes where each element on the stack is of
the form <node, count> where count is the position of node in the acyclic path formed.
Whenever a node is added to the path, we push all its successors on the stack with a count
as 1 greater than that of the node, since the successor will be immediately after the node in
the path.

1. Read the graph and store it in an adjacency matrix.

2. Initialize and empty stack of nodes, say S.

3. For all nodes in the graph, push <node, 0> on stack S.

4. Go on doing the following steps until the stack becomes empty.

5. Pop a <node, count> from the stack.

6. If node is already included in the path, we have obtained an acyclic path in the flow
graph, so print it.

7. See the next node on the top of the stack (do not pop it) and flag all the nodes that will
not be in the next path as false. Go to step 5.

8. Add node to path at the position indicated by its count and flag the node as true to
indicate that it is present in the path.

9. Push all the successors of node on the stack with count one greater than the count for
node.

10. Go to step 4

Algorithm 16: Generate all paths in a flow graph
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Generate all the paths in a reducible flow graph that begin with a back edge

In this algorithm, we maintain a stack of nodes where each element on the stack is of
the form <node, count> where count is the position of node in the acyclic path formed.
Whenever a node is added to the path, we push all its successors on the stack with a count
as 1 greater than the that of the node, since the successor will be immediately after the node
in the path.

1. Read the graph and store it in an adjacency matrix.

2. Perform a depth first traversal of the graph and find the “dfn” numbers for all nodes, as
given in [5].

3. Initialize and empty stack of nodes, say S.

4. For all nodes in the graph, push <node, 0> on stack S.

5. Go on doing the following steps until the stack becomes empty.

6. Pop a <node, count> from the stack.

7. If node is already included in the path, we have obtained an acyclic path in the flow
graph, so print it.

8. See the next node on the top of the stack (do not pop it) and flag all the nodes that will
not be in the next path as false. Go to step 5.

9. Add node to path at the position indicated by its count and flag the node as true to
indicate that it is present in the path.

10. Initialize hasBackEdge = false, to indicate that currently we have found no back edge
beginning from node.

11. Push all the successors of node on the stack with count one greater than the count for
node. Since we are interested only in paths that begin with a back edge, when pushing
the second node (count = 1), see to it that we push only those successors of node
for which the edge node→ successor is a back edge. If any such successor of node is
found, make hasBackEdge true.

12. Once pushing of all the successors of node is completed, in case we were pushing the
successors of the first node and hasBackEdge = false, then there was no back edge
from the node, so there is no acyclic path beginning with a back edge that starts from
this node. So, flag this node as false to indicate that it is not present in the path.

13. Go to step 5

Algorithm 17: Generate all paths in a flow graph that begin with a back edge
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Finding the node listing of the graph by simplified heuristics

In this algorithm, the paths are processed in a decreasing order of the depth of the paths.
For each path, we assign a “span” (a sequence of nodes between two consecutive back
edges) to the corresponding level. This algorithm will always give density ≤ depth of the
graph. It is much simpler than the one implemented in heuristic since the reverse traversal
is avoided and the algorithm is much easier to understand.

1. Read the graph and find the depth first numbers (dfn) for each node by performing a
depth first traversal.

2. Read all the paths that begin with a back edge and store them in a linked list. While
reading the paths, do not store the first node in the path as it will be covered in the
initial traversal.

3. Now add the path to the node listing one by one beginning from paths having maximum
depth to paths having minimum depth (1).

4. To add a path to the node listing:

(a) Initialize level := 0

(b) add the first node to level = 0
(c) for all the further nodes do

if we traversed a back edge then
level := level + 1;
add node to level;

end if
end for

Algorithm 18: Simplified heuristic node listing
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Finding the dominators

Finding the dominators is the similar to the iterative data flow analysis. The method is akin
to forward data flow analysis with intersection as the confluence operator. For each node
n, we calculate D(n), the set of dominators of n. In the real program, we also perform an
“inverse transitive closure” operation to find the immediate dominators of the nodes so as to
construct the dominator tree.

1: D(n0) := {n0};
2: for n in N − {n0} do
3: D(n) := N ;
4: end for

/* End Initialization */
5: while changes to any D(n) occur do
6: for n in N − {n0} do

7: D(n) := {n} ∪
(

∩
p∈predec(n)

D(p)

)
;

8: end for
9: end while

Algorithm 19: Dominator computing algorithm
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Appendix A- Some Referenced Papers

In this appendix, we present the following main papers that were referenced during the project work.

❏ Node Listings Applied to Data Flow Analysisby Ken Kennedy [22].

❏ Node Listings for Reducible Flow Graphs1 by Al Aho and J.D. Ullman [4].

1We would like to thank the Academic Press for allowing us to reprint this paper



Node Listings Applied to Data Flow Analysis

K. W. Kennedy
Rice University

ABSTRACT

A new approach to global program data flow analysis which constructs a “node listing” for the control flow
graph is discussed and a simple algorithm which uses a node listing to determine the live variables in a pro-
gram is presented . This algorithm combined with a fast node listing constructor due to Aho and Ullman has
produced anO(n log n) algorithm for live analysis.The utility of the node listing method is demonstrated by
an examination of the class of graphs for which “short” listings exist. This class is quite similar to the class of
graphs for “understandable” programs.

1. INTRODUCTION

When analyzing computer programs at compile time for code optimization, one encounters a
class of problems which requires the construction of “data flow” information from the control flow
graph. Many algorithms for the construction of such information have appeared in the literature most
of these solve a specific problem and requireO(n2) “extended” or “bit vector” steps wheren is the
number of vertices in the control graph. Recently Ullman[U] published an algorithmic method which
can be used to solve a number of these problems inO(n log n) extended steps.
The purpose of the current work is to follow a new line of attack: from the control flow graph of a
program we construct an intermediate representation of the flow called “node listing”, which is then
used to solve data flow problems.
This paper is primarily devoted to an introductory treatment of the basic concepts surrounding the
node listing. The final section, however, investigates the class of graphs for which the node listing
method produces linear time algorithms for data flow analysis.

2. CONTROL FLOW ANALYSIS

The flow analysis of a program usually begins with the program expressed in some intermediate
text which is scanned and subdivided intobasic blocks,sequence of instructions which are always
executed in order. After the last instruction in a block, control may transfer to any one of a number
of basic blocks calledsuccessorsof the block just executed.
We may represent a program by itscontrol flow graph(or flow graph) in which each node represents
a basic block and each edge represents a possible block-to-block transfer. A flow graph is therefore a
tripleG = (N,E, n0) where

1. N is a finite set of nodes,

2. E is a finite set of edges (a subset ofN ×N ), and

3. n0 is the unique node with no predecessors, called theprogram entry node.
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In these terms we may define the set of successorsS(x) of a block x:

S(x) = y ∈ N |(x, y) ∈ E.

Similarly,we defineP (x), the set ofpredecessorsof x:

P (x) = y ∈ N |(y, x) ∈ E.

A path in the control flow graph fromn1 to nk is a sequence of nodes(n1, n2, . . . , nk) such that
(n1, ni+1) ∈ E, 1 ≤ i < k. The path lengthof (n1, n2, . . . , nk) is k − 1, the number of edges
used in traversing the path. Asimple pathis a path in which no node is repeated except possibly the
first (which may also be the last). Asimple cycleis a simple path(n1, n2 . . . , nk), k > 1, such that
n1 = nk.

3. DATA FLOW ANALYSIS

We shall consider data flow analysis by studying a representative problem, that of locating “live”
variables within a program. Given an item(variableX), which is defined at various points in a pro-
gram. We wish to determine for each pointp in the program flow graph whether or notX will be used
after control leavesp. We say thatX is live atp if it can be used again anddead atp otherwise. The
“live” information would be useful in register allocation for example, since the value of a variable
which can never be used again need not be saved.
For simplicity, we formulate another version of this problem: for each blockb in the program, deter-
mine the setlive(b) of variablesX for which there is a path from the entry point ofb to a use ofb,
which path isX-clear (contains no redefinition of the variableX). We can now translate this problem
to one of solving a system of boolean equations. Letinside(b) be the set of variablesX which are live
on entry to blockb because there is a use ofX within b which is not preceded by a redefinition. Let
thru(b) be the set of variablesX for which there exists anX-clear path throughb. Note that the sets
inside(b) and thru(b) can be computed by a local examination of blockb.
Now there exists anX-clear path from the entry ofb to a use ofX if and only if there exists such a
path to a use withinb or throughb to a successor ofb and there to a use. In equation form:

(?)live(b) = inside(b) ∪ ∪
x∈S(b)

(thru(b) ∩ live(x)) .

The solution to this system of equations clearly provides a solution for our simplified live analysis
problem.
Several methods for the solution of(?) have been proposed [Ke1,Ke2,HU1,Ki]; curiously, all the pro-
posed methods involveO(n2) algorithms even though Ullman’s method [U] provides anO(n log n)
algorithm for a related but somewhat different problem. The author knows of no published algorithm
to solve(?) which is faster thanO(n2); in particular the method of Ullman cannot be adapted to live
analysis in a straight forward way.
We here present the simplest way of solving the live equations in hopes of finding its sources of
inefficiency. Suppose we begin with all the live sets empty and iterate through the graph applying
equation(?) until none of the live sets change. This method adapted from Hecht and Ullman [HU1].
ALGORITHM A: Live Analysis (Hecht and Ullman)
Input:
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1. A flow graphG = (N,E, n0), |N | = n, with the nodes numbered from1 to n in some suitable
manner. Each node is referred to by its number.

2. Setsthru(j) andinside(j) for all j, 1 ≤ j ≤ n

Output: Sets live(j), 1 ≤ j ≤ n.
Method:

1. Initially, let live(j) = inside(j), 1 ≤ j ≤ n.

2. Do stepc for j = 1, 2, . . . , n in order. If any live(j) changes for anyj, repeat stepb; otherwise
halt.

3. Apply equation(?) to blockj.

Hecht and Ullman have shown that this algorithm is correct and that stepb will be executed at most
d+2 times whered is equal to the maximum number of backward branches in any simple path within
the flow graph [HU1]. Since stepc requires|S(j)|+ 1 bit-vector steps and it is applied to every node
in the graph for each execution ofb, a total of(d+ 2)(|E|+ |N |) bit-vector steps are required. It can
be shown that [HU1,Ke3] thatd is O(|E|) in the worst case so the algorithm may requireO(|E|2)
bit-vector steps (O(n2) whenever the graph is restricted so that|E| ≤ k|N | = kn for some fixedk ).
There seem to be two major areas of inefficiency in this approach. First, an extra pass through the
program is required to discover that no sets have changed. This and the testing for changed sets on
every pass produces a lot of unnecessary work that might be avoided if we could somehow know when
to halt the iteration. Second, iteration over every node in each pass seems to be overkill. The problem
is to iterate exactly enough times to transmit information along any simple path in the program. The
“node listing” method attempts to overcome these difficulties.

4. NODE L ISTING

To gain some motivation for the node listing concept, consider the flow graph in figure 1 below.

1

2

3

4

Figure 1. A ‘‘(4,1) climbing graph’’.
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On this graph the Hecht-Ullman approach to live analysis could require 5 iterations over the four
nodes. However, if equation(?) were applied to nodes in order (1,2,3,4,3,2,1) then all the live sets
would be correctly computed and fewer than two iterations through the graph would be required. The
node listing is really a specification of the order in which an equation is to be applied to nodes of a
graph. As it happens, these specifications are often quite short and the algorithms which use them are
correspondingly fast.
We define abasic pathin a flow graphG = (N,E, n0) to be a simple path(n1, n2, . . . , nk) such that
no shorter simple path fromn1 to nk is contained as a subsequence of(n1, n2 . . . , nk). In figure 2
below, the simple path (1,2,3,4,5) is not a basic path because it contains the basic path (1,2,4,5).

Figure 2. Simple and basic paths

1

 2

4

5

3

In dealing with data flow problems, we will be concerned with basic paths, because as we shall
see, longer simple paths can add nothing to the data flow information being propagated. For example,
suppose that we are trying to determine if variableX is live in node 1 of figure 2. Suppose also that
there is an exposed use ofX in node 5. We wish to know if there is anX-clear path from node 1 to
node 5. In determining this, we need not consider the path (1,2,3,4,5) because if this path isX-clear
then the path (1,2,4,5) must beX-clear also. The basic path restriction is weaker than a simple path
restriction and should allow us to find shorter listings.
We now define anode listingfor a program flow graphG = (N,E, n0) to be a sequence

l = (n1, n2 . . . , nm)

of nodes fromN (where nodes may be repeated) such that every basic path inG is a subsequence of
l. That is, if

(x1, x2 . . . , xk)

is a basic path inG, then there exist indices

j1, j2 . . . , jk

such thatji < ji+1, 1 ≤ i < k, andxi = nji , 1 ≤ i < k.
THEOREM 1: For any flow graph there exists a node listing of length≤ n2 wheren = |N |.
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Proof: Supposex1, x2, . . . xn are all the nodes of the graph, then
l = (x1, x2, . . . , xn, x1, x2, . . . , xn, x1, x2, . . . , xn) with n repetitions of(x1, . . . , xn) is certainly
such a listing.

A node listing is said to beminimal if there exists no shorter node listing for the same program
flow graph. We will be concerned with finding minimal or near minimal listings.
Before continuing, let us examine the utility of this concept. Suppose we have a node listing for a
given flow graphG; then the following algorithm computes the live sets inG.
ALGORITHM B: Live Analysis via Node Listing.
Input:

1. A flow graphG = (N,E, n0), |N | = n.

2. A node listingl = (x1, x2, . . . , xn) for G.

3. The setsthru(j) andinside(j) for each nodej ∈ N .

Output: The setslive(j)for eachj ∈ N .
Method:

1. Initially, let live(j) = inside(j), 1 ≤ j ≤ n.

2. Perform step (c) once for each nodexj in l in reverseorder,then halt.

3. Apply equation(?) atxj.

THEOREM 2: Algorithm B terminates and correctly computes the “live” sets.
Proof: Termination is trivial.
To show correctness we must show that live(j) is correctly computed for each nodej.
Let j be an arbitrary node in the graph and supposeX is live on entry toj. Then there must be an
X-clear path inG to a use ofX. Furthermore, there must be abasicX-clear path to such a use since
everyX-clear path contains a basicX-clear path (removing nodes cannot cause a path to lose the
X-clear property).
Let (j1, j2, . . . , jk) be such a path wherej = j1. Suppose also thatX is not live due to a use with-
in j (otherwise it is marked live in stepB1). The fundamental property of node listings assures us
that(j1, j2, . . . , jk) is a sequence ofl, so the nodes of our basic path will be processed in the order:
jk, jk−1, . . . , j2, j1.
When nodejk−1 is processed,X will be put in live(jk−1) since it is live injk anX cannot be re-
defined injk−1 (since the path isX clear). A chain of similar arguments allows us to conclude that
whenj1 = j is processedX will be put in live(j1) since it was put in live(j2) in the previous step.
Thus if any variable is live on entry to any node, that variable will be put in the live set for that node
during the algorithm. If a variable is not live at arbitrary nodej, then it cannot be added to live(j) by
the correctness of equation(?) used inB3 [Ke3].
THEOREM 3: (Complexity of Algorithm B)
Suppose that each node inG has at mostk successors for fixedk. Then the total number of bit-vector
steps required by the algorithm is|l|(k + 1).
Proof: StepB3 requiresk + 1 bit-vector steps and it is executed exactly|l| times where|l| denotes
the length of the listingl.
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The speed of algorithmB depends directly on the length of a node listing for the graph to which it is
applied. The question immediately arises: how short can these listing be? The next few sections deal
with this question.

5. FLOW GRAPH REDUCIBILITY

Ullman [U] has defined two transformations which can be performed on a flow graphG. Trans-
formationT1 is the removal of the self-looping edge (x, x) fromG. Let y be a node having a single
predecessorx; then transformationT2 is the replacement of the nodesx andy and the edges (x, y) by
the single nodez. The new graph contains the edge (z, z) only if G contained either (y, x) or (x, x).
A flow graph is said to bereducibleif repeated application ofT1 andT2 until neither transformation
is possible yields the trivial flow graph (a single node). Hecht and Ullman [HU1] have shown that the
property of reducibility is independent of the order in whichT1 andT2 are applied. An important
result, also due to Hecht and Ullman [HU2] will be useful later.
DEFINITION: A nodex is said to dominate a nodey if every path fromn0 to y containx.
THEOREM 4. A flow graph is reducible if and only if for each cycleC ofG there is an entry node of
C which dominates all other nodes inC.
Theorem 4 indicates that all loops in a reducible flow graph are single-entry.
It is interesting to note that reducibility is a common property of program. In fact, all “structured”
programs have this property [HU2]. It is therefore reasonable to restrict our concern to node listings
for reducible flow graphs.

6. LISTING GRAPHS

We can approach the node listing problem through an equivalent problem through an equivalent
problem, that of constructing an acyclic graph which contains every basic path inG. Our motivation
comes from the following lemma.
LEMMA 1: Let G = (N,E) be an acyclic flow graph, that is, there does not exist a sequence
(x1, . . . , xk) of nodes inG such thatx1 = xk and(xi, xi+1) ∈ E, 1 ≤ i < k. Then there exists a node
listing of length|N | for G. Furthermore, this node listing contains every path, not merely the basic
paths.
Proof: Apply Knuth’s “topological sort” [Kn] algorithm to the acyclic program flow graph. The result
is a linear listing(y1, . . . , yn) for G with one copy of each node inG.
Let (x1, . . . , xk) be a path inG. Let mi be the index ofxi in the listing forG, i.e., xi = ymi . If
(xi, xi+1) is an edge inE, then bt the order-preserving property of the topological sortmi < mi+1.
The sequence of edges(xi, xi+1, 1 ≤ i < k therefore impliesm1 < m2 < . . . < mk so the basic path
(x1, . . . , xk) is a subsequence of the generated listing. Since the path was chosen arbitrarily, all such
paths are subsequences and the generated listing is a node listing.
The reader should note that this proof is constructive in that it provides an algorithm for producing a
listing (the topological sort) in time proportional to the number of nodes and edges inG.
We now attempt to generalize the method of Lemma1.
DEFINITION: A directed graphL = (NL, EL) is said to be a listing graph forG = (N,E, n0) if

1. L is cycle free

2. There exists a functionφ : NL ⇒ N which is onto.



Node Listings Applied to Data Flow Analysis 154

The nodes of a listing graph may be thought of as “representing” nodes ofG, that is, we say
y ∈ NL representsx ∈ N if φ(y) = x. Every node inG is represented by some node inL; however,
there may be several representations of any given node. The inverse ofφ,

φ−1 : 2N ⇒ 2NL

defines the representations ofx ∈ G; that is,φ−1(x) is the set of representations ofx.
DEFINITION Consider the pathP = (x1, . . . xk) in G. We say thatP is reflected inL = (NL, EL) if
there exist nodesy1 . . . , yk such that

1. y1 ∈ φ(xi), 1 ≤ i < k and

2. (yi, yi+1) ∈ EL, 1 ≤ i < k, i.e.,(yi, . . . , yk) is a path inL.

A listing graphL is said to becompletefor G if every basic path inG is reflected inL.
LEMMA 2: LetG = (N,E, n0) be a program flow graph and letL = (NL, EL) be a complete listing
graph forG. Then there exists a node listing of length|NL| for G.
Proof: By Lemma 1, there exists a node listingl(L) of length |NL| for L. We produce a node
listing l(G) by replacing each nodey in l(L) by φ(y). Suppose(x1, . . . , xk) is a basic path inG; let
(y1, . . . , yk) be its reflection inL. Then(y1, . . . , yk) is a subsequence ofl(L) by Lemma 1, so

(φ(y1), φ(y2), . . . , φ(yk)) = (x1, . . . , xk)

is a subsequence ofl(G) by construction.
Since the algorithm for producing a node listing forG from its complete listing graphG is linear
in the number of nodes and edges inL we may view the problem of constructing a complete listing
graph forG as equivalent to the problem of constructing a node listing forG.
The next theorem allows us to restrict our attention to strongly connected subgraphs of a flow graph.
THEOREM 5. LetG(N,E, n0) be a program flow graph and let(Ci = (Ni, Ei)|1 ≤ i ≤ m) be the
set of maximal strongly connected components ofG. If there exists a node listingli for eachCi, then
there exists a node listing of length

|N0|+
∑m

i=1 |li|

whereN0 is the set of nodes inN which are not in any of theCi.
Proof: Let G′ = (N ′, E′, n0) be the acyclic graph derived fromG by replacing each componentCi
by a singleci. Then

N ′ = N0 ∪ (ci, 1 ≤ i ≤ m)

and by Lemma 1, there exists a node listingl′ of length

|N0|+m

for G′. Now replace each nodeci in l′ by the listingli. The length of the resulting listingl is

|N0|+
∑m

i=1 |li|
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We need to show thatl is a node listing forG.
Let P = (x1, . . . , xk) be a basic path inG.
Case 1: All the nodes ofP are in some strongly connected componentCi. ThenP must be a subse-
quence of the listingli and hence a subsequence ofl.
Case 2: The nodes ofP are not wholly contained in anyCi. Suppose we break down the path into
contiguous partsPj, 1 ≤ j ≤ p, such that

1. eachPj is a path wholly contained in someCi or wholly contained in the acyclic part ofG, and

2. the pathP is formed by concatenating thePj end to end in order of increasingj.

Create a new pathP ′ by concatenating thePj end to end while transforming anyPj which is wholly
contained inCi to the single nodeci. The result is a path inG′ which must be a subsequence ofl′ by
lemma 1. All that remains is to show that ifPj is contained inCi then it is a subsequence ofli. This
follows immediately if we showPj to be a basic path.
LEMMA 3. Let P = (x1, . . . , xk) be a basic path in flow graphG, and letC = (Nc, Ec) be a
subgraph ofG formed by taking a subset of nodes ofG and all edges among those nodes. Let
Pc = (xj, xj+1, . . . , xq) be any contiguous portion of the pathP which is wholly contained inC.
ThenPc is basic inC.
Proof: Suppose not; then there exists a shorter pathP ′c from xj to xq in C which is wholly contained
in Pc. But if this is so then by replacingPc byP ′c in the pathP , we can get a shorter pathP ′ which is
wholly contained inP , a contradiction of the assumption thatP is basic.
The proof of the lemma completes the argument that the listingl of length

|N0|+
∑m

i=1 |li|

is a node listing forG and hence the theorem is proved.

7. SHORT NODE L ISTINGS

In this section we investigate the usefulness of node listing for data flow analysis by examining
the class of graphs for which node listings for which node listings are “short”, that is bounded in
length byk|N | for some fixedk. Our hope is to show that there exists short listings for many of those
graphs which require large amounts of computation by one of the “standard” algorithms [Ke1, HU1].
The restriction we shall make is actually a bit stronger than the one described above.
DEFINITION: A flow graphG = (N,E, n0) is said to be k-listable if there exists a complete listing
graphL = (NL, EL) for G such that

|φ−1(x)| ≤ k, ∀x ∈ N.

With this definition, lemma 1 may be restated (in slightly weaker form) as follows:
LEMMA 1’: All acyclic flow graphs are 1-listable.
We next turn our consideration to the class of 2-listable graphs.
LEMMA 4: If G = (N,E, n0) is a control flow graph which contains a nodex such thatx is on every
cycle inG, thenG is 2-listable.
Proof: We construct the listing graphL = (NL, EL) by building two acyclic graphsL0 andL1 and
taking their union.
Let L0 be the acyclic graph constructed fromG by removing every edge leading out of nodex and
renaming the nodes in the resultant graph:
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NL0 = (y, 0)|y ∈ N
EL0 = ((y1, 0), (y2, 0))|(y1, y2) ∈ N andy1 6= x

LetL1 be the acyclic graph constructed fromG by removing the edges leading intox and renaming.

NL1 = ((y, 1)|y ∈ N − (x)) ∪ (x, 0)
EL1 = (((y1, 1), (y2, 1))|(y1, y2) ∈ E andy1, y2 ∈ N − (x)) ∪ (((x, 0), (y1, 1))|(x, y1) ∈ E)

The union of these two graphsL = L0 ∪ L1 is acyclic because bothL0 andL1 are acyclic and there
are no edges of the form((y1, 1), (y2, 0)) in L.
Defineφ : NL ⇒ N as follows:

φ((y, 0)) = φ((y, 1)) = y, ∀y ∈ N.
We must show thatL is a complete listing graph forG. LetP = (y1, . . . , , yk) be a basic path inG.
If P does not pass throughx then it must be included in bothL0 andL1. SupposeP containsx. Let
P0 be the part ofp up to and includingx andP1 be the part afterx. By lemma 3P0 andP1 are both
basic, soP0 is reflected inL0 while P1 is reflected inL1. The edge betweenx and its successor y in
P is represented inL1 by the edge((x1, 0), (y1, 1)) which was included inL by construction. Thus

P is reflected inL andL is a complete listing graph forG.
There are two representations((y, 0), and(y, 1)) in L of every node inG exceptx which has but

one. ThereforeG is 2-listable.
Note that we have used a subtle fact which is implicit in our definition of node listing, that is, the
path(x, x), if it exists inG, is not basic.This is because self-looping blocks can be completely

analyzed by local methods and are therefore considered basic blocks in this analysis.
It has been shown [Ke1,U] that the class of “seashell graphs”, whose form is depicted in figure 3

below, requireO(|N |2) bit vector steps to analyze using the interval method for live analysis.

Figure 3. The seashell graph with 4 nodes.

However, the node listings for these graphs are of length2|N |−1 by lemma 4, so the node listing
approach will be clearly superior on this class of graphs (i.e.,O(|N |)).
We next turn our attention to a somewhat larger class of graphs which are 2-listable. We shall define
this class by defining “acceptable” graph-transformations.
LetG = (N,E, n0) be a control flow graph. Furthermore, suppose there exists a functiont
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t : N ⇒ (0, 1)

which defines the “type” of a node: ift(x) = 1, we say thatx is expandable, otherwisex is non-
expandable(a basic block). By definition,t(n0) = 0.
DEFINITION: An interval transformation onG = (N,E, n0, t) is one which produces a graphG′ =
(N ′, E ′, n0, t

′) by replacing any expandable nodex in G by a regionR = (NR, ER, hR) with the
following restrictions

1. All predecessors ofx in G become predecessors ofhR in G′.

2. R is connected

3. Every cycle inR containshR

4. The region headhR is non-expandable

In applying an interval transformation, edges of the form(y, x) in G are replaced by edges
(y, hR) in G′ while each edge(x, y) may be replaced by several edges(xR, y), xR ∈ NR. The name
“interval transformation” arises because the regionsR are Cocke-Allen intervals [AC1].
DEFINITION: An interval transformation is said to be single-exit if all the exits from the expanded
region come from the same node, i.e., there exists a nodeeR in R such that every edge of the form
(x, y) in G is replaced by the edge(eR, y) in G′.
Figure 4 depicts a single-exit interval transformation. The non-expandable nodes are drawn as rect-
angles.

exit

non−expandeable head

Figure 4. A single−exit interval transformation

DEFINITION: An out-graph for a single entry strongly connected region is a subgraph ofR
which contains

1. every basic path from a node inNR to an exit fromNR,

2. every basic path from a node inNR− (hR) to a latching node (a predecessor ofhR inNR), and
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3. for each properly contained, single-entry, strongly-connected subregionS = (NS, ES, hS),
every basic path from a node inNS − (hS) to a latching node ofS.

An in-graph forR is a subgraph which contains every basic path from the head ofR to another
node ofR.
The following theorem is an adaptation of a result by Hecht and Ullman [HU3].

THEOREM 6. If G = (N,E, n0) is a reducible flow graph then there exists an acyclic in-graph
for G which consists of all the forward branches inG.
Proof: Thedagof a reducible flow graph is the subgraph formed by eliminating fromG those edges
removed by an application ofT1 during the reduction ofG. Hecht and Ullman [HU3] have shown
that the dag of a reducible flow graph is acyclic and unique. Furthermore, it contains every cycle-free
path from the header ofR to a node withinR, because any “backward branch” from a node on such a
path must by Theorem 4 branch to a node which is already on the path. Hence the dag contains every
basic path to a node withinR.
DEFINITION: it A 2n-acceptance transformation is a single-exit interval transformation such that the
expanded regions has an acyclic out-graph.
The transformation in figure 4 above is a 2n-acceptable, while the region shown in figure 5 can never
be the target of a 2n-acceptable transformation.

1

2 3

4

exit

An Unacceptable Region

3

4

1

2

Minimal Out−graph

Figure 5. An unacceptable target region.

LEMMA 5. If G = (N,E, n0) is a reducible flow graph andG′ = (N ′, E′, n0) is produced from
G by an interval transformation, thenG′ is also reducible.
Proof: Hecht and Ullman [HU2] have shown that every interval is reducible. Therefore, we can
reduce the expanded regionR to a single node by the application of a sequence ofT1 andT2 trans-
formations. The result is the original graphG which is reducible by another sequence of such trans-
formations. If these two sequences are applied in the order described, the graphG′ will be reduced to
a single node.
LEMMA 6.LetR = (NR, ER, hR) be a single-entry strongly connected region with an acyclic out-
graph out(R). If R′ = (NR′ , ER′ , hR) is formed fromR by applying a 2n-acceptable transformation
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to any node inR excepthR, thenR′ has an acyclic out-graph.

Proof: Let out(R′) be formed by inserting the out-graph for the expanding regionRe = (Ne, Ee, he)
in place of the expanded node and replacing branches into and out of the expanded node by branches
to the header ofRe and from the exit ofRe respectively. Clearly out(R′) is acyclic so we need only
show that it is a valid out-graph forR′.

1. LetP be a basic path from a node withinR′ to an exit. IfP contains no nodes ofRe thenP
must be in out(R) and therefore in out(R′). Assume thatP does not contain nodes ofRe. The
nodes withinRe must be contiguous inP because of the single-entry single-exit restriction on
Re; that is, no basic path to an exit ofR′ can pass through the exit node ofRe twice. Therefore
we may replace the nodes ofRe in P by the single-expanded node fromR. The resulting path
P0 is basic inR (since if it were notP would be not basic inR′) and is contained in out(R′).
The portion of the path withinRe is basic inRe by lemma 3 and hence is contained in out(Re).
Therefore the whole path is contained in out(R′) by construction.

2. LetP be a basic path in a subregionS = (NS, ES, hS) of R′ from a node other than the head
hS to a latching node forS.

(a) SupposeS does not contain the expanded node. ThenP is in out(R) and therefore in
out(R′).

(b) SupposeS is the expanded regionRe. ThenP is in out(Re) and hence in out(R′).

(c) SupposeS contains the expanded node. On any path throughRe to a latching node ofS
the nodes ofRe must be contiguous by the same argument as in casea above. Therefore
the pathP0 in which the nodes fromRe are replaced by the single expanded node is in
out(R) and henceP is in out(R′) by lemma 3 and the construction.

Note that caseb3 includes the special caseR′ = S, soP may be any basic path to a latching
node forR′.

THEOREM 7: LetG = (N,E, n0) be a control flow graph formed by beginning with a single
expandable node and repeatedly applying 2n-acceptable transformations to produce a sequence of
graphs(G0, G1, . . . , Gm, G) which ends inG. ThenG is 2-listable.
Proof: Let L0 be the acyclic out-graph forG (guaranteed by lemma 6) in which each nodey is
renamed(y, 0) as in the proof of lemma 4. SinceG is reducible by theorem 6 there exists an acyclic
in-graph forG as well. LetL1 be this graph with each nodey rename(y, 1). FormL = L0 ∪ L1. For
each node(x, 0) in L0 which is a latching node for a headerhx (of some subregion ofG) insert the
branch((x, 0), (hx, 0)) in NL. The resulting graph is acyclic because bothL0 andL1 are acyclic and
branches between them go only one way. We need only show thatL is a complete listing graph for
G. SupposeP is a basic path inG. There are two case to consider

1. The pathP contains no branch from a latching node to its region head. In this caseP consists
entirely of forward branches [HU3] and must be contained inL1.

2. The pathP contains at least one branch from a latching node to its region head. Let(y, h0) be
the last such branch inP . Hecht and Ullman [HU3] have shown that the portionP0 of P up
to and includingy must be entirely contained in the region headed byh0 (otherwise the path
P would be a cycle throughh0). Hence,P0 is contained in the out-graph ofR0 (by lemma 6)
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and in the out-graph ofG (also by lemma 6). The portionP1 of P beginning withh0 consists
entirely of forward branches and is therefore reflected inL1. finally, the edge((y, 0), (h0, 1)) is
in L by construction so the entire pathP is reflected inL.

But there are at most two representations of each node inG so

|φ(x)| ≤ 2

and the theorem is proved.

Consider the family of “spiral graphs” defined by transformations of the form shown in figure
6. It can be easily seen that both generating transformations are 2n-acceptable. Therefore the spiral

Generating Transformations

Figure 6. Spiral Graphs

graphs are 2-listable. This family is important because it has been shown that live analysis on spiral
graphs requiresO(|N2|) bit-vector steps when either of the “standard” algorithms is applied [Ke3].
A more interesting case is presented by the transformations of Bohm and Jacopini [BJ] (figure 7)
which are often taken as standard for “structured” programming [DDH]. COROLLARY: Any flow
graph formed from a single node by repeated application of the transformations of Bohm and Jacopini
is 2-listable.
Proof: Clearly transformations 2 through 5 are 2n-acceptable. Only transformation 1 is in question
because it does not have a single block as its head. However, transformation 1 can be eliminated if
we include the four 2n-acceptable transformations shown in figure 8.

The result now follows immediately from theorem 7.
Although it is not our intention to exhaustively investigate the 3-listable graphs, the following theo-
rem should give some indication of the addition power obtained by allowing 3 copies of any node.
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1) Sequential expansion 2) Block expansion

3) Conditional expansion 4) Repeat−while expansion 5) Repeat−until expansion

Figure 7. The transformations of Bohm and Jacopini.

THEOREM 8: LetG = (N,E, n0) be a control flow graph generated from a single node by repeated
application of single-exit interval transformations in which the out-graph of the expanded region can
be made acyclic by duplicating the head of that region once. ThenG is 3-listable.
Proof: The same construction as in the proof of theorem 7 will work if modified so that the branches
into the out-graph of the expanded region go to both copies of the head. The proof is then straight-
forward and follows the proof of theorem 7. The number of representations of any node is bounded
by 3 since we only make a third copy of a non-expandable node.

Theorem 8 allows us to consider the “double-exit loop” or “loop conditional”(figure 9) in which
a special condition inside the loop causes a branch to a piece of code for exceptional processing
before returning to the main execution stream.

The need for such generalized loop exits in goto-less programming has been discussed in the
literature [Kn2,Z]. It is therefore gratifying that the addition of such a control structure will not
increase the complexity of data flow analysis unreasonably.

8. SUMMARY AND CONCLUSIONS

We have defined the concept of a “node listing” and examined its usefulness in the solution of
global data-flow analysis problems. The class of flow graphs with “short” listings is large and in-
clude most of those flow graphs which would be generated by structured programming and many
flow graphs on which the standard data-flow algorithms do quite poorly.
Recently, Aho and Ullman [AU2] have devised an algorithm which, given a reducible flow graph
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Figure 8. Eliminating transformation 1.

G = (N,E, n0), will construct a node listing forG of length proportional to|N | log |N | in time
proportional to|N | log |N |. Thus the previously open question of whether or not there exists an
O(|N | log |N |) algorithm for live analysis has been resolved via the node listing approach.

The node listing method also may have implications in another important area of computer sci-
ence. Recently, much attention has been centered around the question “What makes a program well-
structured ?” Many authors have attempted to define which control structures should be avoided if a
program is to be easily read and understood by another person, but no real quantitative measures have
been put on this quality of “understandability”. However, the length of a program’s node listing is
in one sense a measure of its understandability to the compiler. We have seen here that the compiler
and the human agree that certain control structures such as those of Bohm and Jacopini are simple. It
does not, therefore, seem unreasonable to view the complexity of a control structure in terms of the
node listing expansion that it may cause.
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Node Listings for Reducible Flow Graphs

A. V. Aho
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K. Kennedy recently conjectured that for everyn node reducible flow graph, there is a sequence of nodes
(with repetitions) of lengthO(n log n) such that all acyclic paths are subsequences thereof. Such a sequence
would, if it could be found easily, enable one to do various kinds of global data flow analyses quickly. We show
that for all reducible flow graphs such a sequence does exist, even if the number of edges is much larger than
n. If the number of edges isO(n), the node listing can be found inO(n log n) time.

1. INTRODUCTION

Much of the research in global data flow analysis has centered around a class of reducible flow graphs,
first defined by Allen [2] and shown empirically by Knuth [3] to include virtually all the flow graphs
arising from naturally occurring FORTRAN programs. One general approach to solving global data
flow problems is the technique of iteratively converging on the maximum fixed point of a set of
equations. Hecht and Ullman [4] showed that for the usual equations on bit vectors, e.g., [5–8],
convergence could be obtained when one had visited the nodes in such a way that every cycle-free
path was a subsequence of the nodes actually visited.

An ordering of nodes based on depth-first search was used in [4] to show that convergence will be
very rapid on reducible flow graphs, assuming the evidence of [3] that programs are not only reducible
but of small loop nesting depth. The same technique of propagating data along acyclic paths can be
applied to Kildall’s [9] lattice-theoretic generalization of the bit vector data flow algorithms, at least
in a restricted subcase [10].

Kennedy [1] suggested that for those data flow problems for which propagation along acyclic paths
suffices, a solution could be expedited by finding for each flow graph, a (strong) node listing, an
ordering of the nodes of a flow graph which includes every acyclic path as a subsequence. For
example, the flow graph of Fig. 1 has a node listingabcba, while the method of [4] would require
visiting nodesa, b, andc in that order, four times.

Kennedy [1] also mentioned the notion of aweak node listing, an ordering of the nodes such that
every acyclic pathP is either a subsequence of the listing or there is another acyclic path which is a
proper subsequence ofP and has the same source and destination. Clearly every strong node listing
is a weak node listing, so a construction that yields short strong node listings also yields short weak
node listings. We consider weak node listings briefly when we mention lower bounds.

In [1] Kennedy showed that for a subclass of the reducible graphs, essentially those produced from
constructed frombegin · · · end, while · · · do, and if · · · then · · · elsestatements, a node listing
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a

c

b

FIG. 1. Example Flow Graph

of length2n exists for any suchn node graph2. Thus, for these graphs, which reflect structured
programs that do not usebreak statements, there exists a linear algorithm to do the kinds of data flow
analyses covered by [4, 10]3. Kennedy also posed the question of how long a node listing is necessary
for an arbitrary reducible flow graph, and conjecturedO(n log n) is sufficient4. In this paper we show
that this conjecture is correct even if the number of edges is much greater thatn. If the number of
edges isO(n), then the node listing can be found inO(n log n) time.

2. BASIC DEFINITIONS

A (directed) graph is a pair(N,E) whereN is a set ofnodesandE ⊆ N × N is a set ofedges.
If (n1, n2) is in E, we writen1 → n2, and sayn1 is predecessorof n2 andn2 a successorof n1.
We sayn1 is the tail andn2 the headof the edgen1 → n2. A path in G is a sequence of nodes
n1, n2, . . . , nk, k ≥ 1, such thatni → ni+1 for all i, 1 ≤ i < k. If ni = nj for somei 6= j, the path
has acycle. Otherwise it isacyclic.

A flow graphis a tripleG = (N,E, n0), where(N,E) is a graph,n0 in N is theinitial node, and
there is a path fromn0 to each node inN . In a flow graph, noden1 dominatesnoden2 if every path
from the initial node ton2 passes throughn1. For example, in Fig. 1, assuminga is the initial node,
we havea dominating all nodes,b dominating both itself andc, andc dominating only itself.

Reducible flow graphs were defined originally in [2] in terms of “intervals.” The characterization
we shall find most useful here is that of [14], in terms of the following transformationsT1 andT2 on
flow graphs.

T1: Remove aloop, i.e., an edgen→ n for some noden.
T2: Supposen has a unique predecessorm, andn is not the initial node. Then replacem andn

by a new node, sayp. Forq 6= m,n, there is an edgeq → p if there was previously an edgeq → m.
For r 6= m,n, there is an edgep → r if there was previously an edgem → r or n → r or both.
There is an edgep → p if previously there was an edgem → m or n → m or both. Under this
transformation, we say thatm consumesn.

2This same class of graphs was considered by Graham and Wegman independently, and another completely different
but equally efficient approach was discovered. Geschke also demonstrated that certain data flow problems could be solved
easily for this class, and his algorithm can be shown linear

3By “linear,” we mean of linear time complexity in the number of nodes of the flow graph. Bit vector operations, or
lattice meet and function applications in the more general framework of, are deemed to take one “time unit.”

4For arbitrary graphs, the problem is equivalent to finding a sequence of digits1, 2, . . . , n such that every permutation
of 1, 2, . . . , n is a subsequence. Newey shows a sequence of length proportional ton2 is necessary and sufficient here.
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A flow graph isreducibleif it can be transformed into a single node by repeated applications ofT1

andT2.

EXAMPLE 1. The flow graph of Fig. 1 is reduced by the sequence shown in Fig. 2.�

a

d

b

a

c

a

d

e e
T2 T1 T2 T1

FIG. 2. Reduction of a reducible flow graph.

As a flow graph is reduced, each node in every derived graphrepresentsa set of nodes and edges
of the original graph, and each edgerepresentsa set of edges of the original. Initially, each node and
edge represents itself. If we applyT1 to eliminate edgen → n, then afterwardsn represents what it
and the edgen → n previously represented. IfT2 is applied, withm consumingn to form p, thenp
represents whatm, n and the edgem → n previously represented. An edgeq → p represents what
q → m represented, and edgep → r represents whatm → r andn → r represented. Edgep → p
represents whatm→ m andn→ m represented.

EXAMPLE 2. After the first step of Fig. 2, noded representsb, c and the edgeb → c. Edged → d
representsc→ b. At the penultimate step,e representsa, b, c and the edgesb→ c, c→ b anda→ b.
At the end,e represents all nodes and edges, of course.�

A region with headerh of a flow graphG = (N,E, n0) is a set of nodesN ′ and edgesE ′ ⊆ N ′×N ′,
such that ifm→ n is inE, then

(i) if n is inN ′ andn 6= h, thenm is inN ′, and
(ii) if m andn and inN ′ andn 6= h, thenm→ n is inE ′.

That is, the only way a region can be entered from outside is through the header , andE ′ includes
all those edges inN ′ × N ′, with the possible exception of some which enter the header from inside
the region.

EXAMPLE 3. In the flow graph of Fig. 1,N ′ = {b, c} is a region ifE ′ is eitherb → c alone or
{b→ c, c→ b}. �

3. BASIC RESULTS

The following characterization of reducible flow graphs is taken from [15].

LEMMA 1. All and only reducible flow graphs can have their edges partitioned uniquely into two
sets the forward edges, and back edges , having the following properties.

(1) The flow graph with the back edges deleted forms a flow graph with no cycles, and if any
back edge is added, a cycle results.

(2) For each back edgen→ m,m dominatesn.
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Using Lemma 1, it is possible to show the following result, taken from [4].

LEMMA 2. LetP = n1, n2, . . . , nk be an acyclic path in a reducible flow graph, and letni1−1 →
ni1 , ni2−1 → ni2 , . . . , nir−1 → nir be the sequence of back edges alongP , in that order. Thennij
dominatesnij−1

for all j, 1 < j ≤ k. �

Since dominance is easily seen to be transitive (see [6], for example), Lemma 2 implies that each
head of a back edge along an acyclic path dominates all the previous heads of back edges.

We now prove a lemma which will be central to the development of our theorem.

LEMMA 3. LetR = (N ′, E ′) be a region with headerh of flow graphG = (N,E, n0). LetP be an
acyclic path inG which begins at some node outsideR. ThenP traverses no back edge ofR.

Proof. SupposeP has in sequence two distinct nodesn,m of R, wheren→ m is a back edge. By
definition of region,P reachesh beforen, or h is n. SinceG is a flow graph, there is a pathQ from
n0 to h, and we can assume without loss of generality thatQ is acyclic. Thus, no node ofR except
h appears onQ by definition of region again. ThenQ followed by a portion ofP from h to n forms
a path fromn0 to n that avoidsm, unlessm = h. In the first case, we contradict Lemma 1 which
says thatm dominatesn. In the second casem appears twice onP , sinceh = m = n is ruled out by
assumption.�

It follows from Lemma 1 that there is an ordering of the nodes of a reducible flow graph such that
any path which uses no back edges is a subsequence thereof. In particular, any topological sort of
the flow graph with back edges removed suffices. Let us call such an orderingacyclic. It follows
from Lemma 3 that if a path enters a regionR through its header, it mush follow a subsequence of an
acyclic ordering ofR until it leavesR.

Our final preliminary result concernsparsesof reducible flow graphs. As we reduce a reducible
flow graph byT1 andT2, the nodes represent regions at all times. Reduction byT1 does not increase
the number of nodes in the region represented by the node to whichT1 is applied, although it does
add some edges. Thus, onlyT2 builds regions with progressively larger number of nodes. We may
therefore state the following lemma, whose proof is found in [16].

LEMMA 4. LetR = (N ′, E′) be a region of some flow graphG represented by some node during
the reduction ofG, withN ′ not a singleton. ThenN ′ can be partitioned into two nonempty disjoint
sets of nodesN1 andN2, such that(N1, E1) and (N2, E2) are regions, whereE1 = E ′ ∩ N1 × N1

andE2 = E ′ ∩N2 ×N2. �

Note that there may be edges inE ′ that are in neitherE1 norE2. These edges have for heads the
header of(N1, E1) or (N2, E2) and have tails in the other regions.

4. SPIRAL GRAPHS

We now introduce a special kind of reducible flow graph, called spiral graph, for which we give two
methods of constructing a node listing. The next section shows that any given flow graph can be
reduced to a spiral graph; the node listing of the spiral graph can be used to help construct a node
listing for the given graph.

The class ofspiral flow graphs is defined recursively as follows.

1. A node with no edge is a spiral flow graph.

2. If G = (N,E, n0) is a spiral graph andn is a new node, then
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(a) (N ∪ {n}, E ∪ E ′ ∪ {n → n0}, n0) is a spiral graph, whereE ′ is the set of edges from
nodes inN to n, and

(b) (N ∪ {n}, E ∪ E ′ ∪ {n→ n0}, n) is a spiral graph, whereE ′ is an in (a).

3. Nothing else is a spiral graph.

These two constructions are illustrated in Fig. 3. The primary distinction between these two con-
structions is whethern or n0 is the header of the constructed graph.

G

n0

n

n

n0

G

FIG. 3. Construction of spiral graphs.

Note that each spiral graph has a specific order in which the nodes were added during its construc-
tion. Except for edgesn → n0 added in case 2, all edges “spiral outwards,” that is their heads were
added after their tails and therefore the heads are further from the center.

If n is added to a spiral graph by rule (2a), call it atrailing node, and if added by rules (1) or
(2b), call it a leadingnode. Note that the initial node of a spiral graph is always a leading node.
The following lemma summarizes some results that are easily proved by induction on the number of
nodes in a spiral graph.

LEMMA 5.(i) Every spiral graph is reducible; all spiral graphs from which it is formed are regions.
(ii) Edges added using rule (2a) exceptn → n0, and the edgen → n0 added by rule (2b) are

forward; the other edges are back edges.
(iii) Each leading node dominates all previously added nodes.

Proof. (i) By the inductive hypothesis,G of Fig. 3(a) or (b) is reducible. Reducing it to a single
node results in a pair of nodes with edges between them. This resulting graph is clearly reducible.

(ii) An easy induction shows that the edges designated as forward form an acyclic graph, and
that no other edge can be added without forming a cycle . By Lemma 1 and part (i), this selection of
forward and backward edges is unique.

(iii) By part (ii), back edges enter each leading node from all previously added nodes. The
result then follows from Lemma 1.�

We now need a recursive method of constructing node listings for spiral graphs.

LEMMA 6. LetG be a spiral graph formed from nodesn1, n2, . . . , nk added in that order. LetG′

be the spiral graph consisting of nodesn1, n2, . . . , nj−1 and all edges between them inG. LetG′′ be
the (spiral) graph formed fromnj, nj+1, . . . , nk and all edges between them. LetA andB be node
listings forG′ andG′′, respectively, and let̂A andB̂ respectively denote the nodes ofG′ andG′′ in an
acyclic order. ThenAB̂B̂ÂB is a node listing forG.
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Proof. Suppose an acyclic pathP begins inG′, and then entersG′′. If P follows more than one back
edge upon or after leavingG′, it can never return toG′. In proof, Lemma 5(2) tells us that every back
edge enters a leading node. By Lemma 2, the second back edge enters a node which dominates the
headh of the previous back edge. By Lemma 5(3) applied toh, the header ofG′ cannot be reached
without passing throughh again. Thus, ifP leavesG′ and returns, it does so after following exactly
one back edge. The portion ofP until the return toG′ is thus a subsequence ofAB̂B̂. Once inG′ for
the second time,P may not follow any back edge by Lemma 3. ThusP is a subsequence ofAB̂B̂Â
until it again leavesG′. In that event, it cannot re-enterG′ at all, since to do so it would have to pass
through two leading nodes which dominate the header ofG′, which we just argued as impossible.
ThusP is a subsequence ofAB̂B̂ÂB.

The case in whichP begins inG′′ rather thanG′, or whereP begins inG′ but never returns are
easier to handle than the case above, so we omit further details.�

We extend Lemma 6 to apply to the partition of a spiral graph into three parts, the middle part being
a single node.

LEMMA 7. LetG be as in Lemma 6 withG′ formed as before fromn1, n2, . . . , nj−1 andG′′ formed
from nj+1, nj+2, . . . , nk. Let A and B be node listings forG′ andG′′; let Â and B̂ be acyclic
orderings of these graphs. ThenAB̂B̂ÂnjB̂B̂ÂB is a node listing forG.

Proof. Straightforward generalization of Lemma 6.�

We now need to show not only that each spiral graph has a short node listing, but also that given
an arbitrary weighting on the nodes, there is a node listing in which the node of heaviest weight
appear the fewest times. The motivation for considering weights is that arbitrary reducible graph will
be reduced to subgraphs of spiral graphs. In so doing, the nodes of the spiral graph will represent
regions of varying sizes and the weight of a node in the spiral graph will reflect the size of the region
it represents.

In what follows we need certain constants which we assign as follows:a = 2/ log 3
2

5 andb =

(3
2
)
1/2

. Note thata log b = 1.

LEMMA 8. Let G be a spiral graph formed from nodesn1, n2, . . . , nk in that order. Letni
have weightwi, and letW =

∑k
i=1 wi. ThenG has a node listing in whichni appears at most

a log (bW/wi) times, for1 ≤ i ≤ k.

Proof. If k = 1, the result is trivial. Supposek > 1 and assume the lemma holds for spiral graphs
of fewer thank nodes. It is easy to see that one of the following two cases must occur.

(1) For somej, 1 < j ≤ k, we have1
3
W ≤

∑j−1
i=1 wi ≤

2
3
W , or

(2) For somej, we findwi > 1
3
W ,
∑j−1

i=1 wi <
1
3
W and

∑k
i=j+1 wi <

1
3
W .

In each of these cases we partitionG and apply one of Lemmas 6 or 7.

Case1. 1
3
W ≤

∑j−1
i=1 wi ≤

2
3
W . We partitionG as in Lemma 6, lettingG′ consist of nodes

n1, n2, . . . , nj−1 andG′′ be the remaining nodes. LetW ′ =
∑j−1

i=1 wi andW ′′ =
∑k

i=j wi. By the
inductive hypothesis applied toG′ andG′′,there is a node listingA for G′ in which ni appears at
mosta log (bW ′/wi) times for1 ≤ i < j. Also, there is a node listing forG′′ in which ni appears
at mosta log (bW ′′/wi) times forj ≤ i ≤ k. By Lemma 6 there is a node listing forG in which for
j ≤ i ≤ k, ni appears at most2 + a log (bW ′′/wi) = alog(22/abW ′′/wi) times. SinceW ′′ ≤ 2

3
W ,

and 2
3
22/a = 1, ni appears at mosta log (bW/wi) times. A similar argument prevails in the case

5All logarithms are to the base 2
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1 ≤ i < j.

Case2. wj >
1
3
W ,

∑j−1
i=1 wi <

1
3
W and

∑k
i=j+1 wi <

1
3
W . PartitionG into G′, nj andG′′

as in Lemma 7, lettingG′ consist ofn1, n2, . . . , nj−1 andG′′ consist ofnj+1, nj+2, . . . , nk. By
the inductive hypothesis and the fact that

∑j−1
i=1 wj and

∑k
i=j+1 wi are both less thanW/3, there

are node listingsA andB for G′ andG′′, such thatni appears at mosta log (bW/3wi) times for
i 6= j. By Lemma 7, there is a node listing forG in whichni appears at most4 + a log (bW/3wi) =
a log (24/abW/3wi) times. Since1

3
24/a = 3

4
, we have our result in this case. Finally, there in one

occurrence ofnj in the node listing forG. Sincea log (bW/wj) ≥ a log b = 1, the proof is complete.
�

5. THE MAIN RESULT

We shall now show how to construct anO(n log n) length node listing for any reducible flow graph.
Basically the method is to partition each reducible flow graph into pieces, none of which has more
than two-thirds the whole. The pieces are themselves regions, and node listings for them can be found
recursively. Then we form a subgraph of a spiral graph by reducing each of these regionsR to a single
nodenR. The desired node listing is found by taking a node listing for the spiral graph, substituting
an acyclic ordering for each regionR represented by nodenR, and preceding the result by a node
listing for each region in the partition.

LEMMA 9. LetG = (N,E, n0) be a reducible flow graph withk > 1 nodes. Then we can find
a set of disjoint regionsR1, R2, . . . , Rm, whose union includes all nodes ofG, having the following
properties:

1. none ofR1, R2, . . . , Rm has more that2
3
k nodes ;

2. there is a sequence of regionsS1, S2, . . . , Sm such that:

(a) S1 = R1 ,

(b) for i > 1 , Si consists ofSi−1 andRi with one the predecessor of the other,

(c) Sm isG.

3. The graph formed fromG by reducing each ofR1, R2, . . . , Rm to a single node with no loops
is a spiral graph with zero or more edges removed.

Proof. By Lemma 4, every region of more than one node is the union of two regions, one of which
is the predecessor of the other. Using an argument of [17], we observe that ifT is any region of more
than 2

3
k nodes, then either:

1. it is composed of two nonempty regions, one of which has more that2
3
k nodes, or

2. it is composed of two regions the larger of which has between1
3
k and 2

3
k nodes.

Thus, the algorithm in Fig. 4 will generate the sequence of pairs(Sm, Rm), (Sm−1, Rm−1), . . . ,
(S1, R1). This construction proves parts (1) and (2) of the lemma.

For part (3), we prove by induction oni that, after reduction,Si is a spiral graph with some edges
possibly missing. The basisi = 1 is trivial. For the induction, ifRi is the predecessor ofSi−1 when
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begin
T ← G ;
while T has more than2

3
k nodesdo

begin
let T be composed of regionsT1 andT2,

with T1 having no fewer nodes thanT2 ;
print (T, T2) ;
T ← T1 ;

end ;
print (T, T )

end

FIG. 4. Computing the sequences of regions.

Si is formed, then the result is immediate from construction (2b) in the definition of spiral graph. If
Si−1 is the predecessor ofRi, then construction (2a) suffices.�

EXAMPLE 4. Consider the flow graph in Fig. 5.

The graph is composed of regions{1, 2} and{3, 4, . . . , 10}. The latter has more that2
3
× 10 nodes,

so we print the pair(Sm, Rm) = ({1, 2, . . . , 10}, {1, 2}). Then we work on{3, 4, . . . , 10}, which
can be partitioned in one of two ways, either by separating out3 or 10. Supposing the latter, we have
(Sm−1, Rm−1) = ({3, 4, . . . , 10}, {10}). Then working on{3, 4, . . . , 9} we separate it into{3} and
{4, 5, . . . , 9}. The former isRm−2, and the latter has no more that2

3
× 10 nodes, so it is bothSm−3

andRm−3. The sequences of regions are thus found to be:

i Ri Si
1 {4, 5, . . . , 9} {4, 5, . . . , 9}
2 {3} {3, 4, . . . , 9}
3 {10} {3, 4, . . . , 10}
4 {1, 2} {1, 2, . . . , 10}. �

LEMMA 10. LetG be a reducible flow graph partitioned intoR1, R2, . . . , Rm as in Lemma 9. Let
Ri have node listingAi and acyclic orderingÂi for 1 ≤ i ≤ m. LetH be the spiral graph constructed
fromG by reducing theR’s to single nodes, then possibly adding some edges to make a spiral graph.
LetB be a node listing forH. LetC be constructed fromB by replacing inB each occurrence of
nodeni ofH representingRi by the acyclic orderinĝAi. ThenA1A2 · · ·AmC is a node listing forG.

Proof. Let P be an acyclic path inG. We can writeP asP1P2, whereP1 consists of the prefix
of P until just beforeP leaves one ofR1,R2,. . . ,Rm in which it began. SurelyP1 is a subsequence
of A1A2 · · ·Am. Consider the pathQ in H consisting of those nodes ofH representing the regions
R1,R2,. . . ,Rm through whichP2 travels inG. Qmust be acyclic elseP2 enters the same region twice.
Since regions can only be entered at their headers, the acyclicness ofP2, and hence ofP , would be
contradicted. ThisQ is a subsequence ofB, and by Lemma 3,P2 is a subsequence ofC. ThusP is a
subsequence ofA1A2 · · ·AmC. �

THEOREM 1. Every reducible flow graph ofk nodes has a node listing of length no more than
k + ck log k, wherec = 3/ log 3

2
= 5.13.
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1

2

3

4

5 6 7 8

9

10

FIG. 5. Reducible Flow Graph

Proof. We proceed by induction onk. The basisk = 1 is immediate, so suppose the result for flow
graphs of fewer thank nodes. By Lemma 10, we need only bound from above the length of the node
listingA1A2 · · ·AmC described in that lemma. Letwi be the number of nodes in regionRi. Then by
the inductive hypothesis,Ai has a node listing of length at mostwi + cwi logwi.

By Lemma 8, the spiral graphH formed fromG as in Lemma 10 has a node listingB in which the
node representingRi appears no more thana log (bk/wi) times. Thus the node listingC has length
at most

∑m
i=1 awi log (bk/wi). HenceA1A2 · · ·AmC has length bounded above by

k∑
i=1

(wi + cwi logwi + awi log (bk/wi))

=
m∑
i=1

wi +
m∑
i=1

(c− a)wi logwi + a
m∑
i=1

wi log bk

= k +
m∑
i=1

(c− a)wi logwi + ak log k + ak log b (1)

Sincewi ≤ 2
3
k for all i, by Lemma 9, we have

m∑
i=1

(c− a)wi logwi ≤
m∑
i=1

(c− a)wi log
2

3
k = (c− a)(k log k − k log

3

2
). (2)

Substituting (2) into (1) yieldsk+ ck log k− ck log 3
2

+ ak log 3
2

+ ak log b. It suffices to observe that
−c log 3

2
+ a log 3

2
+ a log b = −3 + 2 + 1 = 0 by our choice ofa, b andc. �
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In order for the method proposed in [1] to be feasible, it is necessary not only that short node listings
exist, but that they can be easily constructed, else we might spend more time constructing the node
listing than using it to drive an “efficient” data flow analysis algorithm. Fortunately, the construction
we have proposed can be carried out efficiently if the number of edges in not too large.

THEOREM 2. A node listing for a reducible flow graph ofn nodes with at most2n edges6 can be
constructed inO(n log n) time.

Proof. It is straightforward to check that the constructions in Lemmas 6, 7, 8, and 10 and Theorem
1 require time proportional to the length of the node listing generated. The only possible problem
concerns Lemma 9, where we proved the existence of sequence of regionsR1,R2,. . . ,Rm without
showing how they could be found effectively. However, in [18] a method of parsing reducible flow
graphs in less thatO(n log n) time is presented, so the actual construction ofR1,R2,. . . ,Rm poses no
problem.�

COROLLARY. There is anO(n log n) bit vector step algorithm to compute live variables for flow
graphs in which no node is the tail of more than two edges.

Proof. Visit each node in theO(n log n) length node listing, performing at most three bit vector
steps per node, as proposed in [1].

6. LOWER BOUNDS ONTHE LENGTHS OFNODE L ISTINGS

Recently, Markowsky and Tarjan [19] have shown that there exist reducible flow graphs withn nodes
all of in-degree and out-degree two or less for which no weak node listing is shorter that(n/2) log n.
Thus, our construction is optimal to within a constant, for both strong and weak node listings.

7. EXTENSIONS

We might wish to apply the node listing technique to (1) finding live variables in flow graphs withe
edges, wheree� n, the number of nodes, or to (2) “forward” problems such as “reaching definitions”
or “available expressions” [e.g., 5, 6, 16], whether or note >> n. In each case, the work involved
in visiting a node is proportional to the number of edges in (for “forward” problems) or out (for
“backward” problems like live variables) of the node. We can extend Theorems 1 and 2 to consider
weightsof nodes, where weight can be defined as the in or out degree.

By the same method as we have used we can show that inO(n log n + e) time we can construct
a node listing for a reducible flow graph withn nodes ande ≥ n − 1 edges, such that the sum of
the weights of the nodes in the listing is at mostW logW , whereW is the sum of the weights of
the nodes in the graph. LettingW = e then yields anO(e log e) algorithm for all known bit vector
oriented data flow analysis problems on reducible flow graphs. This result is comparable to the time
bound for such problems obtained in [11,16].

A short length for weak node listings would have practical significance, since for certain problems
such as “reaching definitions” or “live variable” (but not for “available expressions”) a weak node
listing is sufficient to perform a global flow analysis.

Fredrickson [20] recently reported that the constantc in Theorem 1 can be reduced to2.01 by a
finer treatment of Lemmas 6 and 7 and a further refinement of the parameters in Lemmas 8 and 9.

6This restriction on edges follows from the usual assumption that branches are two-way. Thus no flow graph resulting
from a program can have more than twice as many edges as nodes.



Node Listings for Reducible Flow Graphs 175

ACKNOWLEDGMENTS

The authors wish to thank Brenda Baker for her helpful comments on the manuscript.

REFERENCES

1. K. KENNEDY, Node listing techniques applied to data flow analysis,in “Proc. 2nd ACM
Conference on Principles of Programming Languages,” January 1975, pp. 10-21.

2. F. E. ALLEN, Control flow analysis,SIGPLAN Notices 5(1970), 1-19.

3. D.E.KNUTH, An empirical study of FORTRAN programs,Software: Practice and Experience
1 (1971), 105-134.

4. M. S. HECHT AND J. D. ULLMAN , A simple algorithm for global data flow problems,SIAM
J. Computing4 (1975), 519-532.

5. J.COCKE, Global common subexpression elimination,SIGPLAN Notices 5(1970), 20-24.

6. A. V. AHO AND J. D. ULLMAN , “The Theory of Parsing, Translation and Compiling, Vol. 2,
Compiling,” Prentice-Hall, Englewood Cliffs, N. J., 1973.

7. M. SCHAEFER, “A Mathematical Theory of Global Flow Analysis,” Prentice-Hall, Englewood
Cliffs, N. J., 1973.

8. K. KENNEDY, A global flow analysis algorithm,Int. J. Comp. Math.3 (1971), 5-15.

9. G. A. KILDALL , A unified approach to global program optimization,in “Proc. ACM Sympo-
sium on Principles of Programming Languages,” October, 1973.

10. J. KAM AND J. D. ULLMAN , Global optimization problems and iterative algorithms,J. Assoc.
Comput. Mach.23 (1976), 158-172.

11. S. L. GRAHAM AND M. WEGMAN, A fast and usually linear algorithm for global flow analy-
sis,J. Assoc. Comput. Mach.23 (1976), 172-202.

12. C. M. GESCHKE, Global program optimizations, Ph. D. Thesis, Carnegie–Mellon University,
1972.

13. M. NEWEY, Notes on a problem involving permutations as subsequences, STAN-CS-73-340,
Computer Science Department, Stanford University, Stanford, California, 1973.

14. M. S. HECHT AND J. D. ULLMAN , Flow graph reducibility,SIAM J. Computing1 (1972),
188-202.

15. M. S. HECHT AND J. D. ULLMAN , Characterizations of reducible flow graphs,J. Assoc. Com-
put. Mach.21 (1974), 367-375.

16. J. D. ULLMAN , Fast algorithms for elimination of common subexpressions,Acta Informatica
2 (1973), 191-213.



Node Listings for Reducible Flow Graphs 176

17. P. M. LEWIS II, R, E. STEARNS, AND J. HARTMANIS, Memory bounds on recognition of
context-free and context-sensitive languages,in IEEE Conference Record of 6th Annual ACM
Symposium on Switching Circuit Theory and Logical Design, October, 1966, pp. 190-202.

18. R. E. TARJAN, Testing flow graph reducibility,J. Comput. System Sci.9 (1974), 355-365.

19. G. MARKOWSKY AND R. E. TARJAN, Lower bounds on the lengths of node sequences in
directed graphs. IBM Watson Research Center, Yorktown Heights, N. Y., March 1975.

20. G. N. FREDRICKSON, Refinements to Aho and Ullman’s node listing algorithm. Technical
Report TR-404, Department of Computer Science, University of Maryland, September 1975.



Appendix B- Papers Written During the
Project

In this appendix, we enumerate the following papers that were written during the project in order to
document the results that we have obtained.

❏ Some Interesting Results About Applications of Graphs in Compilers

❏ Parallel Processing on Linux with PVM and MPI

❏ Software for Parallel Processing

❏ Parallel Programming on PARAM

❏ Graphical User Interface using Qt













Appendix C- PVM and MPI Function List

In this appendix we list the PVM and MPI functions used in the brute force programs implemented
on thePARAM 10000supercomputer. These serve as a representative of the type of services provided
by PVM and MPI. More information about PVM functions can be found in [1] and that about MPI
can be found in [25].

PVM Function Table
Function Description

pvm send() Send a message in the active send buffer to the process with the
given task ID and with the given tag.

pvm recv() Receive a message into the active receive buffer from the given
process and having the given tag.

pvm initsend() Initialize the active send buffer to send data.
pvm pkint() Pack an array of integers into the send buffer. Similar functions

for other data types too.
pvm upkint() Unpack the data from the active receive buffer into the user buffer.
pvm mcast() Multicast (i.e. broadcast to many but not all) a message in the

active send buffer.

MPI Function Table
Function Description

MPI Send() Blocking send. Sends a message with the given tag to the speci-
fied process in the given communicator.

MPI Recv() Blocking receive. Receives a message with the given tag from the
specified process in the given communicator.

MPI Bcast() Broadcasts a message to all the processes in the given communi-
cator.

MPI Probe() Probes or a message with the given tag from the given process.
MPI Comm rank() Gets the rank of the process in the given communicator .

Apart from these functions, many more features of PVM and MPI were used but are not docu-
mented for want of space.

❑ ❑ ❑



About the Project Report

In this project report, we have tried to document all the aspects of the project, right from the observa-
tions and the theoretical results known previously and those that were derived by us during the course
of the project, the various algorithms developed and used during the project and the various programs
and implementations carried out during the project. The project gave us an opportunity to learn some
of the rich software tools available under a Linux system. One of them was a typesetting system
called LATEX, using which this project report was developed. The LATEX file was calledreport.texand
it was converted into a Postscript file using the following commands:

$ latex report
$ bibtex report ....................................... generate bibliography
$ makeindex -s myright.ist report ........................ generate index
$ latex report
$ latex report ......................... run till all references resolved
$ dvips -o report.ps report.dvi ........................create a .ps file

The Postscript file was then directly fed to a Postscript Printer for taking the printouts.

Here, we briefly describe LATEX as used in the project report. This project report was typeset in
LATEX and extensive use of various LATEX features was made. New environments likeman, proof,
observation, result, exampleetc. were defined. The bibliographic database was maintained using
BIBTEX using theplain style. The figures for this report were drawn using the softwarexfig, from
where they were converted into combined Encapsulated Postscript (EPS)/pstexformat for inclusion
in the report. This format enables inclusion of mathematical formulae into the figures. Some hacking
with thexfigfile format was required to get the things correct. Index was generated using theMakeIn-
dexutility. More information about LATEX and the associated utilities can be found in [29, 15, 19].
The following LATEX packages were used:
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Package Use

times For using the Times font in the document
oldgerm For Gothic style font in the certificate
graphics For inclusion of Encapsulated Postscript files
subfigure For managing and numbering subfigures
calc For maintaining user defined counters
theorem For theorems, results and the likes
fancyhdr For customizing headers and footers
vpage For customizing the page size and margins
amssymb For special mathematical symbols like∴
amsmath For typesetting mathematics
algorithmic, algorithm For typesetting algorithms
pifont For special Postscript characters like✶

multicol For multicolumn typesetting
makeidx For automatic index generation
textfit For arbitrarily enlarging text size in chapter numbers
titlesec For customizing the chapter, part titles
longtable For typesetting tables
ulem Forunderline and likes
setspace For single and double spacing
pstricks For some Postscript tricks

In general, we can conclude that typesetting the project report using LATEX was much more
efficient than aWYSIWYG environment like Microsoft Word. Also, we had to spend lesser time
with the report than we would had to do otherwise to produce the same quality document. The work
of setting up LATEX, learning LATEX and trying out different packages was done by Rahul Joshi.

❑ ❑ ❑
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